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Plasma proteomics links brain and immune 
system aging with healthspan and longevity
 

Hamilton Se-Hwee Oh    1,2,3  , Yann Le Guen    4,5, Nimrod Rappoport6, 
Deniz Yagmur Urey2,3, Amelia Farinas    2,3,7, Jarod Rutledge    6, 
Divya Channappa2,3,4, Anthony D. Wagner    3,8, Elizabeth Mormino4, 
Anne Brunet    3,6,9, Michael D. Greicius4 & Tony Wyss-Coray    2,3,4 

Plasma proteins derived from specific organs can estimate organ age and 
mortality, but their sensitivity to environmental factors and their robustness 
in forecasting onset of organ diseases and mortality remain unclear. To 
address this gap, we estimate the biological age of 11 organs using plasma 
proteomics data (2,916 proteins) from 44,498 individuals in the UK Biobank. 
Organ age estimates were sensitive to lifestyle factors and medications and 
were associated with future onset (within 17 years  ̓follow-up) of a range of 
diseases, including heart failure, chronic obstructive pulmonary disease, type 
2 diabetes and Alzheimer’s disease. Notably, having an especially aged brain 
posed a risk of Alzheimer’s disease (hazard ratio (HR) = 3.1) that was similar 
to carrying one copy of APOE4, the strongest genetic risk factor for sporadic 
Alzheimer’s disease, whereas a youthful brain (HR = 0.26) provided protection 
that was similar to carrying two copies of APOE2, independent of APOE 
genotype. Accrual of aged organs progressively increased mortality risk  
(2–4 aged organs, HR = 2.3; 5–7 aged organs, HR = 4.5; 8+ aged organs, HR = 8.3), 
whereas youthful brains and immune systems were uniquely associated with 
longevity (youthful brain, HR = 0.60 for mortality risk; youthful immune 
system, HR = 0.58; youthful both, HR = 0.44). Altogether, these findings 
support the use of plasma proteins for monitoring of organ health and point 
to the brain and immune systems as key targets for longevity interventions.

Aging causes organ dysfunction, chronic disease and death. Although 
interventions such as caloric restriction, young plasma and rapamycin 
extend healthspan in model organisms1, potentially slowing aging, 
their human efficacy is unclear due to limited molecular understand-
ing and assessment tools. Molecular biomarkers of human biological 
age linked to health and disease are needed.

Recent studies show that human organs age at different rates2–6,  
as seen in animals7–9, necessitating organ-specific biological age 

measures. Prior estimates of organ age used clinical metrics and blood 
biochemistry, magnetic resonance imaging (MRI), DNA methylation or 
plasma proteins2–6. However, their reproducibility across cohorts and 
over longitudinal visits, their sensitivity to organ-specific diseases and 
environmental factors and their associations with incident disease and 
mortality independent of each other and established aging biomarkers 
are unclear. Furthermore, it is unclear which organs are key to longev-
ity in humans.
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tested associations between extreme organ youth versus age accelera-
tion on longevity versus early mortality.

Results
Plasma protein-derived organ age estimates in the UKB
To derive estimates of organ-specific biological age from the plasma 
proteome, we (1) identified plasma proteins likely derived from a spe-
cific organ (Supplementary Tables 1 and 2, Methods and Supplementary 
Fig. 1); (2) trained a machine learning model to predict chronological 
age based on the levels of identified organ-enriched proteins (Supple-
mentary Tables 3 and 4 and Extended Data Fig. 1a); and (3) calculated 
the age gap based on each person’s predicted age (the relative predicted 
age compared to individuals of the same chronological age) (Methods 
and Fig. 1a). The age gap provides a measure of relative biological age 
compared to same-aged peers.

We performed these three steps for each of 11 major organs, includ-
ing adipose tissue, artery, brain, heart, immune tissue, intestine, kidney, 
liver, lung, muscle and pancreas. We focused our analyses on these 
organs due to the availability of relevant age-related phenotype data 
in the UKB. To compare organ age gaps to organ-agnostic measures 
of biological age, we also derived age gaps from an ‘organismal’ aging 

Plasma proteomics, enabled by clinical accessibility of blood and 
advancing technologies, is ideal for gaining molecular insights into 
organ health and estimating organ-specific biological age. Building on 
our prior SomaScan-based study (5,678 individuals, 5,000 proteins)4, 
where we introduced machine learning models to estimate organ age, 
in the present study we tested our approach on 44,498 individuals in 
the UK Biobank (UKB) (age 40–70 years), using an orthogonal prot-
eomics platform (Olink, ~3,000 proteins, 1,823 protein name overlap 
with SomaScan). These data were previously generated by the UKB 
Pharma Proteomics Project (UKB-PPP) and have been characterized 
in detail10.

The larger UKB cohort and expanded longitudinal phenotyping 
enabled us to explore organ age associations with a wider range of 
diseases (for example, chronic kidney disease, chronic obstructive 
pulmonary disease (COPD), heart failure and dementias) and focus 
on future disease incidence, which is a better proxy for biological age 
than disease prevalence. We also assessed sensitivity to environmental 
factors, including lifestyle, socioeconomic factors and medication 
use. Lastly, we performed a nuanced examination of mortality risk, 
comparing organ age estimates with established aging biomarkers, 
including PhenoAge and estimated glomerular filtration rate, and we 
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Fig. 1 | Plasma protein-derived organ age estimates in the UKB. a, Study design 
to estimate organ-specific biological age from plasma proteomics data in the 
UKB. A protein was called ‘organ-enriched’ if the gene encoding the protein was 
expressed at least four-fold higher in one organ compared to any other organ in 
the GTEx organ bulk RNA sequencing atlas. Organ-enriched protein sets were 
used to train LASSO chronological age predictors. Samples from 11 of 22 centers 
(n = 23,140) were used for training, and the remaining samples (n = 21,358) were 
used for testing. An ‘organismal’ model, which was trained on the levels of non-
organ-specific (organ-shared) proteins, and a ‘conventional’ model, which was 
trained on all proteins from the Olink assay, were also developed and assessed. 
Model age gaps were calculated and then z-score normalized per organ to allow 

for direct comparisons across organs. Age gaps were characterized and tested 
for associations with disease risk, modifiable lifestyle choices and mortality risk. 
b, Pairwise correlation of organ age gaps from all samples. Inset: the distribution 
of all pairwise correlations, with the dotted line representing the mean. c, A 
LASSO regression model was used to predict conventional age based on organ 
ages and organismal age. Organismal, brain and artery ages were sufficient to 
predict conventional age with r2 = 0.97. Relative weights are shown as a pie chart. 
d, Extreme agers were defined by a 1.5-s.d. increase or decrease in at least one age 
gap. The mean organ age gaps of extremely youthful brain agers and accelerated 
multi-organ agers are shown. Graphics in a and d created with BioRender.com.
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model trained on non-organ-specific proteins (80% of all proteins) 
and a ‘conventional’ aging model trained on all proteins on the Olink 
assay. We confirmed that the top proteins in the conventional aging 
model overlapped with a previous proteomic aging model developed 
on the UKB dataset11.

Data from 11 of 22 plasma collection centers were used for model 
training and the remaining 11 for testing (Fig. 1a; see Methods and Sup-
plementary Figs. 2 and 3 for details on protein quality control, imputa-
tion and modeling). Model performance was highly stable across train 
and test centers (Extended Data Fig. 2a,b and Supplementary Table 4). 
Age gaps were z-scored per aging model to allow for direct comparison 
between organs in downstream analyses (Fig. 1a). We observed some 
sex differences between organ age gaps, with males having older kid-
neys, immune systems and intestines and females having older adipose 
tissue, arteries and hearts (Extended Data Fig. 2c,d).

After deriving organ age gaps, we first determined the uniqueness 
of each measure. If organs age at different rates, then the age gap of one 
organ should be independent from the age gap of another. Pairwise 
correlations between age gaps showed that organ age gaps were only 
weakly correlated (mean r = 0.21; Fig. 1b and Supplementary Table 5), 
confirming previous studies3,4,6. Organ age gaps differed from the con-
ventional age gap, which strongly correlated with the organismal age 
gap (r = 0.87) due to majority protein overlap. Organismal, brain and 
artery ages explained 97% of conventional age variance, with organis-
mal age contributing 74% (Fig. 1c).

We previously identified extreme organ agers who displayed espe-
cially fast aging in a single organ or in many organs4. We searched for 
extreme agers in the UKB by identifying individuals with age gaps above 
or below 1.5 s.d. from the population average in any organ (top and 
bottom ~6–7% percentiles). Here we found not only fast (≥1.5 z-age gap) 
organ agers but also slow (≤–1.5 z-age gap) organ agers (1–2% prevalence 
each, 33% total; Fig. 1d and Extended Data Fig. 2e). Differences between 
studies may stem from different sample sizes, proteomics platforms 
and thresholds. We also identified multi-organ agers who had two or 
more extreme organ age gaps (26% of samples; Extended Data Fig. 2e). 
Fourteen percent of samples were ambiguous, with both positive and 
negative extreme age gaps, and 27% of remaining samples were defined 
as normal agers (Extended Data Fig. 2e). Multi-organ agers were signifi-
cantly older than normal and single-organ agers, suggesting that aged 
organs accumulate over time (Extended Data Fig. 2f).

To assess longitudinal stability of organ age gaps, we analyzed 
1,176 individuals from the COVID-19 repeat imaging study with plasma 
proteomics (earlier version of Olink, 1,459 proteins) from 2–3 visits 
over 1–15 years (visits: baseline, Instance 2 and Instance 3) (Methods). 
Using organ aging models trained on the 1,459 proteins shared across 
Olink assay versions (correlated r ≥ 0.8 with 3,000-protein models), 
we found moderate to strong correlations (mean r = 0.6) between 
baseline and Instance 2 visit age gaps, indicating relative stability over 
approximately 9 years, with potential dynamic changes due to lifestyle, 
disease or technical variability (Extended Data Fig. 3a).

Examining longitudinal stability of extreme ager status, we found 
that baseline extreme agers were 3–22 times more likely to remain 
extreme agers in the same organ at Instance 2 (Extended Data Fig. 3b), 
but 68% lost this status. Analyzing age gap changes in 0.5-s.d. bins, 76% 
of baseline extreme agers maintained directional stability at Instance 
2 and 72% at Instance 3, supporting relative stability (Extended Data 
Fig. 3c–e). Additional studies with larger cohorts, denser sampling 
and higher-coverage proteomics are needed to clarify technical versus 
biological stability.

We next sought to compare our UKB Olink organ aging models 
with our previously developed SomaScan organ aging models. We 
generated Olink plasma proteomics data from 1,636 samples pooled 
across the Stanford Alzheimer’s Disease Research Center (ADRC) and 
the Stanford Aging and Memory Study (SAMS)12,13. We previously gener-
ated SomaScan plasma proteomics data from 601 of these samples for 

our prior study4. This allowed us to directly compare organ age gaps 
derived across different proteomics platforms.

We tested UKB-trained organ aging models on Stanford Olink 
data. Of note, five organ aging model proteins—ANGPTL7, EBI3.IL27, 
GZMB, PGLYRP1 and ADIPOQ—had missing values in all Stanford sam-
ples (Extended Data Fig. 4a). EBI3.IL27 and ADIPOQ had relatively 
strong weights in the liver and adipose aging models, respectively 
(Extended Data Fig. 4a) and, therefore, reduced liver and adipose age 
prediction accuracy in the Stanford samples (Extended Data Fig. 4b). 
Overall, UKB-trained organ aging models showed similar age predic-
tion accuracies across UKB-train, UKB-test and Stanford-test healthy 
control samples, demonstrating robustness of the models (Extended 
Data Fig. 4b).

We next compared organ age gaps between platforms. We 
observed moderate-strong correlations between the two platforms 
(r = 0.3–0.8; Extended Data Fig. 4c) with heart and kidney aging models 
displaying the most concordant age gaps across platforms (r = 0.81 
and r = 0.82, respectively). The overall moderate correlations were 
expected given the differences in proteins measured per platform 
(1,823 proteins overlap, 1,093 Olink-specific, 3,156 SomaScan-specific) 
and the previously reported wide distribution of correlations for the 
overlapping proteins (by name) across the two platforms14 (Extended 
Data Fig. 4d). Even if the same protein by name is measured, the two 
platforms may quantify different forms of the same proteins (that is, 
isoform, posttranslational modification), which may not necessarily 
correlate with each other.

This suggested that each platform may provide complementary 
information in estimating organ age. Gene Ontology enrichment analy-
ses showed that Olink brain aging proteins were enriched for perineu-
ronal nets and glial differentiation, whereas SomaScan emphasized 
postsynaptic assembly; conversely, immune aging pathways were 
similar across platforms (Extended Data Fig. 4e). Both brain models 
were associated with prevalent Alzheimer’s disease (Extended Data 
Fig. 4f), capturing distinct aging aspects. These findings show that 
organ-specific biological age estimates, likely related to organ health, 
can be derived from plasma proteomic data in the UKB.

Organ age estimates predict future age-related disease
For an estimate of biological age to be informative, it must robustly 
associate with the physiological state of the organ or individual and, 
consequently, with age-related health and disease outcomes. Hence, 
we sought to determine whether organ age gaps could predict future 
diseases in their respective organs. We tested the associations between 
all 13 z-scored age gaps and 15 incident age-related diseases (2–17-year 
follow-up) using Cox proportional hazard regression, while adjusting 
for age and sex. Following Benjamini–Hochberg correction for mul-
tiple hypothesis testing, we identified 176 positive and four negative 
significant associations out of 195 tests (Extended Data Fig. 5a and 
Supplementary Table 6).

We discovered highly significant associations between heart 
aging and atrial fibrillation (s.d. increase in heart age gap, haz-
ard ratio (HR) = 1.75, q < 1 × 10−250) and heart failure (s.d. increase in 
heart age gap, HR = 1.83, q = 8.35 × 10−231), pancreas aging and kidney 
aging with chronic kidney disease (s.d. increase in pancreas age gap, 
HR = 1.80, q = 3.36 × 10−247; s.d. increase in kidney age gap HR = 1.66, 
q = 2.85 × 10−228), brain aging with Alzheimer’s disease (s.d. increase 
in brain age gap, HR = 1.80, q = 1.21×10−67) and lung aging with COPD 
(s.d. increase in lung age gap, HR = 1.39, q = 6.82 × 10−49). Liver aging 
was associated with chronic liver disease (s.d. increase in liver age gap, 
HR = 1.20, q = 3.87 × 10−13), albeit the strength of the association was 
modest and similar compared to other organs. Notably, organ-specific 
age gaps consistently exhibited higher HRs than conventional age gaps 
across all diseases (Extended Data Fig. 5a).

The widespread significant associations between organ aging 
(176/195) and disease underscore the systemic nature of aging.  
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To disentangle these systemic effects and identify organ age associa-
tions with disease independent of aging in other organs, we examined 
multivariate Cox models that included all organ age gaps (excluding 
‘conventional’ due to collinearity with ‘organismal’, r = 0.87) as covari-
ates. After accounting for the aging of other organs, we found that 
organ age gap associations with disease became much more organ 
specific (Fig. 2a and Supplementary Table 7). For example, incident 
heart failure was associated with all 13 baseline age gaps individu-
ally but only seven age gaps independently. Counterintuitively, we 
observed that youthful arteries were associated with increased risk 
for many diseases, including type 2 diabetes (s.d. increase in artery 
age gap, HR = 0.68, q = 2.11 × 10−64), COPD (s.d. increase in artery age 
gap, HR = 0.85, q = 8.85 × 10−8), chronic liver disease (s.d. increase in 
artery age gap, HR = 0.87, q = 7.58 × 10−5) and others, highlighting the 
complexity of aging’s link with disease. Notably, Alzheimer’s disease 
was highly specific to brain aging, both individually (s.d. increase in 
brain age gap, HR = 1.80, q = 1.21 × 10−67) and independently of other 
organs (s.d. increase in brain age gap, HR = 1.91, q = 2.37 × 10−67).

We also investigated the associations between extreme organ ager 
status and disease risk, independent of age, sex and other extreme 
organs (Extended Data Fig. 5b and Supplementary Table 8). Multi-organ 
agers 5–7 and 8+ were not included due to limited sample size for most 
diseases. Individuals with 2–4 aged organs had significantly increased 
risk for every disease that we examined. Individuals with extremely 
aged brains, hearts, kidneys or lungs also showed broad increased 
risk of disease. Conversely, individuals with 2–4 extremely youthful 
organs were protected from many diseases, including chronic kidney 
disease, osteoarthritis and COPD. Among youthful organ profiles, the 
brain, immune system and intestine were nominally protective for 
at least four diseases (nominal P < 0.10). A youthful brain was espe-
cially protective of Alzheimer’s disease (extreme brain youth only, 
HR = 0.28, P = 0.076, q = 0.24) and other dementias, and a youthful 
intestine was especially protective of diabetes (extreme intestine youth 
only, HR = 0.30, q = 3.63 × 10−3; Extended Data Fig. 5b).

Given the brain’s strong and unique associations with Alzheimer’s 
disease, we further examined all individuals with extremely youthful or 
aged brains—regardless of single or multi-organ ager status—and their 
associations with Alzheimer’s disease risk, controlling for age, sex as 
well as APOE genotype, the strongest genetic risk factor of Alzheimer’s 
disease. Interestingly, we found that extreme brain aging conferred a 
3.1-fold increase in Alzheimer’s disease risk (HR = 3.11, P = 1.41 × 10−28), 
and extreme brain youth conferred a 74% reduced risk of Alzheimer’s 
disease (HR = 0.26, P = 4.37 × 10−4), independent of age, sex, APOE4 
and APOE2 (Fig. 2c,d). Consequently, individuals with aged brains 
exhibited a 13.5-fold increased risk of developing Alzheimer’s disease 
compared to those with youthful brains. Remarkably, when compar-
ing the effects of brain age to APOE genotype, having an aged brain 
posed a risk similar to carrying one copy of APOE4, whereas having 
a youthful brain provided protection similar to carrying two copies 
of APOE2 (Fig. 2c). Brain age was very weakly correlated with APOE 
genotype (Fig. 2e). Over the 17-year follow-up period, 120 of 2,628 
individuals (4.56%) with aged brains developed Alzheimer’s disease, 
whereas only seven of 1,998 individuals (0.35%) with youthful brains 
developed the disease.

The specificity of the association between brain aging and demen-
tia led us to investigate whether organ age gaps were associated with 
brain volume based on MRI data from follow-up visits (Extended Data 
Fig. 5c). We found that the brain age gap at baseline visit was uniquely 
associated with increased volume of the ventricles and decreased 
volume of cortical regions at Instance 2 (~9 years later on average).

Brain MRI data were previously used to derive estimates of bio-
logical brain age15,16. To compare our plasma proteomic brain age 
estimate with an MRI-based brain age estimate, we trained an MRI 
brain aging model using 479 FreeSurfer brain volumetric phenotypes 
from 45,574 individuals from Instance 2. MRI brain age was correlated 

with chronological age (r = 0.81, mean absolute error (MAE) = 3.65; 
Extended Data Fig. 5d), similar to previous reports15,16. An s.d. increase 
in the MRI brain age gap conferred a 3.2-times increased risk of future 
Alzheimer’s disease (HR = 3.21, P = 2.55 × 10−36), confirming strong 
relevance to functional brain aging. Interestingly, however, MRI-based 
and plasma-based brain age gaps were only weakly correlated with each 
other (r = 0.18, P = 2.50 × 10−30; Fig. 2f), suggesting that each captures 
unique components of brain aging. Although this weak correlation is 
likely due, in part, to the approximately 9-year duration between MRI 
and plasma collection, a recent study showed that plasma brevican 
(BCAN) and glial fibrillary acidic protein (GFAP), but not other brain 
aging proteins identified in our study, were associated with MRI brain 
age17, suggesting that biological differences also contribute to the weak 
correlation. We speculate that MRI brain age captures global cell loss, 
whereas plasma brain age captures some of these volumetric changes 
as well as molecular alterations related to cell states and interactions.

We also assessed organ age gap associations with disease progres-
sion, by regressing age gaps against years since diagnosis, for individu-
als who were diagnosed with disease before blood draw. We found that 
many organ age gaps increased throughout chronic kidney disease 
progression (Extended Data Fig. 5e). Interestingly, the brain age gap 
was not associated with dementia progression (Extended Data Fig. 5f), 
suggesting that it captures age-related changes that may predispose 
individuals to dementia but does not reflect changes occurring after 
disease onset.

We next sought to gain further insights into organ aging by exam-
ining aging model proteins and their weights (Extended Data Fig. 1a). 
Aging models trained on the whole baseline sample versus only the 
randomly selected (86%) baseline samples resulted in essentially 
equivalent aging models and weights (Supplementary Fig. 4). The 
strongest weighted protein in the brain aging model was neurofilament 
light chain (NEFL; Fig. 2h), which increases with age and is a clinical 
biomarker of axon degeneration that is often measured in clinical 
trials for Alzheimer’s disease18,19 and was recently approved as a sur-
rogate endpoint for a clinical trial to treat superoxide dismutase 1 
amyotrophic lateral sclerosis (SOD1 ALS)20,21. Our data suggest that it, 
combined with other proteins, may also be a viable surrogate endpoint 
for brain aging and risk for dementia in normal people. Other highly 
weighted brain aging proteins include myelin oligodendrocyte protein 
(MOG), a component of the outer surface of myelin sheaths, and GFAP, 
a marker of reactive astrocytes, which both increased with age, as well 
as BCAN, a brain extracellular matrix component produced by oligo-
dendrocyte precursor cells, and protein tyrosine phosphatase recep-
tor type R (PTPRR), which both decreased with age (Fig. 2h). Plasma 
NEFL, GFAP and BCAN were previously highlighted as predictors of 
future dementia risk22. Using the permutation feature importance for 
biological aging (FIBA) algorithm4, we found that all of the top seven 
most highly weighted brain aging proteins contributed to the predic-
tion of Alzheimer’s disease risk, showing the importance of leveraging 
the information from many brain-derived proteins to understand brain 
aging and disease risk (Extended Data Fig. 6a).

We then sought to determine which cell types these proteins were 
likely derived from by analyzing public human brain single-cell RNA 
sequencing data23 (Extended Data Fig. 6b). Interestingly, we found 
that approximately half of brain aging proteins were specific to the 
oligodendrocyte lineage, with the rest expressed mostly in neurons and 
then astrocytes (Fig. 2i), pointing to white matter as a key aging region, 
as suggested by human brain MRI and mouse brain RNA sequencing 
studies24,25.

Lung aging was explained primarily by lysosome-associated mem-
brane glycoprotein 3 (LAMP3), a protein expressed specifically in type 
II alveolar stem cells; secretoglobin family 1A member 1 (SCGB1A1), 
also known as club cell secretory protein (CCSP), a marker of club cells; 
and C-C motif chemokine ligand 18 (CCL18), a cytokine expressed by 
alveolar macrophages, potentially reflective of stem cell dysfunction 
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and inflammation in the lung with age. Heart aging was explained 
primarily by N-terminal pro-B-type natriuretic peptide (NT-proBNP), 
a vasodilating hormone that increases in response to heart damage, 
whereas kidney aging was explained by renin (REN), a protein involved 
in blood pressure regulation. Both NT-proBNP and REN were previously 
identified as key heart and kidney aging proteins, respectively, based 
on SomaScan plasma proteomics data4 and are well-established bio-
markers of heart and kidney function. All aging model protein weights 
are provided in Supplementary Table 3, and the top 20 proteins for 
each model are shown in Extended Data Fig. 1a. Together, these data 
show that plasma protein-derived organ age estimates are linked with 
age-related organ diseases and can reveal insights into the aging biol-
ogy of their respective organs.

Organ age estimates are sensitive to modifiable lifestyle 
choices
We next explored whether biological age estimates grounded in physi-
ological states of organ function are sensitive to changes in lifestyle. We 
tested the associations between all 13 z-scored age gaps and 18 lifestyle 
factors (that is, diet, alcohol, smoking, exercise and insomnia) and 
socioeconomic factors (that is, education and Townsend Deprivation 
Index), adjusted for each other as well as age and sex, using linear regres-
sion (Supplementary Table 9). We found 69 positive and 57 negative 
significant associations (q < 0.05) after correcting for multiple hypoth-
esis testing. In line with their known health associations, smoking, 
alcohol, processed meat intake, the Townsend Deprivation Index and 
insomnia were associated with age acceleration across several organs, 
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proportional hazard regression was used to test the association between age 
gaps and future disease risk, adjusted for age-at-blood-draw, sex and other age 
gaps. The heatmap is color coded by age gap log(HR). Heatmap columns are 
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plot visualization of brain age gap versus APOE genotype (n = 43,326). The box 
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whereas vigorous exercise, oily fish consumption, poultry consumption 
and higher education were associated with youthful organs (Fig. 3a).

We also tested the associations between all 13 z-scored age gaps 
and consumption of 137 drugs/supplements (n cases ≥ 100; Supple-
mentary Table 10). After multiple hypothesis test correction, we found 
six products—Premarin, ibuprofen, glucosamine, cod liver oil, multivi-
tamins and vitamin C—that were significantly (q < 0.01) associated with 
youth in at least two organs (Fig. 3b). Ibuprofen, glucosamine, cod liver 
oil, multivitamins and vitamin C products were associated with youth 
primarily in the kidneys, brain and pancreas (Fig. 3b).

Premarin is a conjugated estrogen medication typically prescribed 
to women experiencing postmenopausal symptoms, and estrogen 
medication was recently linked to reduced mortality risk in the UKB26. 
Thus, we wondered whether estrogen medications may extend longev-
ity by preventing menopause-induced accelerated aging of organs 
and disease risk27. Among 47 women with normal, early or premature 
menopause treated with estrogen, earlier menopause was associated 
with accelerated aging across most organs (Fig. 3c), whereas estrogen 
treatment correlated with youthful immune, liver and artery profiles 
(Fig. 3d). Although cross-sectional analyses should be interpreted 
with caution, these findings underscore the sensitivity of plasma 
protein-derived organ age estimates to environmental factors and 
their potential for evaluating the effects of interventions.

Brain and immune system youth predict longevity
We next sought to determine whether organ age estimates were asso-
ciated with future mortality. We tested associations between organ 
age gaps and all-cause mortality risk, adjusting for age and sex, over a 
2–17-year follow-up using Cox proportional hazard regression (Sup-
plementary Table 11). All organs showed significant associations, 

with a 20–60% increased mortality risk per s.d. increase in age gaps 
(Fig. 4a), similar to findings from SomaScan-based organ aging models4. 
These associations were robust to adjustment with blood cystatin C, a 
marker of kidney filtration rate, and PhenoAge, an established blood 
biochemistry/cell-count-based biological age estimate (whose age 
gap has a mortality risk HR of 1.38 in the UKB), suggesting that organ 
age estimates provide independent information not captured by exist-
ing clinical biomarkers. Surprisingly, brain aging was most strongly 
predictive (s.d. increase in brain age gap, HR = 1.59, P = 2.16 × 10−293; 
Fig. 4a), suggesting that the brain may be a central regulator of lifes-
pan in humans similar to findings in animal models (worms, flies and 
mice)28–30. Indeed, individuals with aged brains had increased risk for 
several diseases beyond dementia, including COPD and heart failure 
(Extended Data Fig. 5a,b), consistent with previous studies showing 
that the brain regulates systemic inflammation31–35.

To test whether organ age estimates provided additional predic-
tive power, beyond cystatin C and PhenoAge, we compared concord-
ance indices of mortality risk Cox models that included cystatin C, 
PhenoAge, organ ages or combinations, with age and sex as covari-
ates. Organ ages alone performed similarly to the combined model, 
outperforming cystatin C and PhenoAge, indicating that they capture 
additional predictive information (Fig. 4b). Brain age, conventional 
age, PhenoAge and sex were key predictors in the combined model 
(Fig. 4c). Application of FIBA to understand contributions of brain 
and conventional aging model proteins on mortality risk highlighted 
BCAN, NEFL and PTPRR from the brain as well as ectodysplasin A2 
receptor (EDA2R, organismal protein), chemokine C-X-C motif ligand 
17 (CXCL17, organismal protein) and elastin (ELN, artery protein) from 
the conventional aging model as important proteins (Extended Data 
Fig. 6c–f).
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Although each organ age gap was associated with risk of death, 
we wondered whether the accrual of aged organs would be increas-
ingly detrimental. Hence, we tested whether single-organ extreme 
agers and multi-organ agers (bins of 2–4, 5–7 and 8+ organs) had an 
increased risk of death compared to normal agers, while adjusting 
for age and sex (Supplementary Table 12). Interestingly, we found 
that, whereas having a single aged organ (brain, lung, intestine, heart, 
immune, kidney, liver or pancreas) conferred a 1.5–3-fold increased 
risk of death, having 2–4, 5–7 and 8+ extremely aged organs conferred 
a 2.3-fold, 4.5-fold and 8.3-fold (P = 2.05 × 10−70, P = 3.86 × 10−106 and 
P = 8.30 × 10−127) increased risk of death, respectively (Fig. 4d,e). Nota-
bly, over 60% of individuals with 8+ extremely aged organs at blood 
draw died within 15 years (Fig. 4d).

We then sought to determine whether youthful organ profiles were 
associated with longevity (Supplementary Table 12). We found that indi-
viduals with youthful-appearing arteries had increased mortality risk, 
and those with multi-organ youth had no difference in mortality risk 
compared to normal agers (Fig. 4d). Using FIBA, we found that artery 
protein thrombospondin 2 (THBS2), a protein that decreases with age 
but has a positive association with mortality risk, was responsible for 
the nonlinear association between the artery age gap and mortality 
risk (Extended Data Fig. 6e). Why individuals with broad multi-organ 
youth are not protected is unclear, although this may be due to limited 
sample size.

Notably, though, individuals with youthful brains (HR = 0.60, 
P = 7.49 × 10−3) and immune systems (HR = 0.58, P = 7.34 × 10−3) had 
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significantly reduced mortality risk (Fig. 4d), similar to their unique 
protective associations with disease (Extended Data Fig. 5b). We, 
therefore, assessed individuals with both youthful brains and immune 
systems and found that this group was most strongly protected from 
mortality by effect size (HR = 0.44, P = 0.042; Fig. 4d,e), underscor-
ing the benefits of having a resilient brain and immune system. Over 
17 years, 792 of 10,000 (7.92%) normal agers died, whereas only six of 
160 individuals (3.8%) with youthful brains and immune systems died.

To probe the underlying mechanisms implicated in brain-related 
and immune-system-related longevity, we performed Gene Ontology 
enrichment analyses of the top 10 brain and immune aging model 
proteins based on mortality risk FIBA scores (Fig. 4f,g and Extended 
Data Fig. 6h,i). Selection of brain-specific or immune-system-specific 
plasma proteins as background for the enrichment test did not result 
in significant associations, so we used all genes as background. Peri-
neuronal net was the most enriched brain pathway (BCAN, PTPRZ1 
and NCAN), and secretory granule was the most enriched immune sys-
tem pathway. Intriguingly, neuroinflammation was another enriched 
immune system pathway, composed of metalloproteinase 9 (MMP9), 
a regulator of perineuronal net composition, as well as tumor necrosis 
factor receptor superfamily member 1B (TNFSRF1B) and integrin alpha 
M (ITGAM), also known as CD11B. Youthful brain agers had higher levels 
of BCAN and NCAN, and youthful immune agers had lower levels of 
MMP9 (Extended Data Fig. 6h,i), suggesting that global preservation 
of brain extracellular matrix partly due to reduced degradation by 
peripheral inflammatory factors and reduced chronic inflammation 
partly regulated by the brain could be crucial for promoting longev-
ity. Together, these data reveal that plasma protein-derived organ age 
estimates improve upon existing aging biomarkers for mortality risk 
prediction, the accrual of aged organs progressively increases mortal-
ity risk, and a youthful brain and immune system are key to longevity.

Discussion
Our findings based on plasma proteomics data (~3,000 proteins) from 
nearly 45,000 individuals in the UKB establish plasma protein-derived 
organ age estimates as robust indicators of organ age, health and dis-
ease/mortality risk beyond gold standard clinical aging biomarkers and 
reveal key proteins implicated in the aging process. Furthermore, we 
show that organ age estimates are stable across train/test centers and 
longitudinal visits and are cross-sectionally associated with modifiable 
lifestyle choice, socioeconomic status and medications and, thus, lay the 
foundation for human experiments testing the effects of novel longev-
ity interventions on the biological age of organs at the individual level.

We note key considerations and limitations to inform future work. 
Although our organ enrichment classification based on bulk RNA 
sequencing atlases yielded robust results, confirming the true protein 
sources remains challenging; high-resolution gene expression maps 
including information on alternative splicing and changes with age and 
disease could strengthen confidence. Like many studies, we relied on 
cross-sectional age gaps, which only approximate aging rate histories. 
Longitudinal proteomics data, integrated with deep environmental 
and genetic phenotyping, are essential to accurately measure aging 
rates, distinguish baseline differences and uncover their causes16,36–38. 
Such data could also clarify the sequence of organ aging at individual 
and population levels. Although we observed that multi-organ aging 
increases with age, suggesting cumulative organ decline, the specific 
order of organ aging remains undefined. Surprisingly, individuals with 
highly youthful organ profiles (except for brain and immune system) 
were not protected from mortality, despite assumptions of benefit. 
This aligns with studies showing U-shaped associations between clini-
cal biomarkers (for example, body mass index and platelet count) 
and mortality, where extremely youthful phenotypes are associated 
with elevated risk39–41, warranting further exploration in aging bio-
marker research. Although organ age estimates independently pre-
dict mortality beyond clinical biochemistry biomarkers, their added 

clinical value over established disease-specific biomarkers requires 
disease-by-disease investigation42. Finally, as UKB participants are 
predominantly of European ancestry, organ age estimates may need 
recalibration for diverse genetic and environmental contexts, neces-
sitating broader studies.

In the present study, we found evidence that the brain and immune 
system may be central regulators of aging and longevity in humans, as 
aged brains are most strongly predictive of earlier mortality, and youth-
ful brains and immune systems are uniquely predictive of longevity. 
After all, the brain regulates numerous critical age-related functions 
throughout the body, including circadian rhythm, blood pressure, 
energy homeostasis and stress response, via the neuroendocrine and 
autonomic nervous systems, and chronic inflammation has been heav-
ily implicated in aging1,43. Intriguingly, recent studies show bidirectional 
communication between the brain and immune system in aging and 
disease-relevant contexts, such as chronic stress, atherosclerosis and 
infection31–35,44. These observations suggest that accelerated aging or 
maintenance of youth in the brain and immune system likely has broad 
age-related effects across the body, although additional studies are 
needed to test this hypothesis more rigorously in humans.

Regarding the molecular alterations that occur with brain aging, 
we found many unexpected age-associated and disease-associated 
changes in oligodendrocyte lineage and extracellular matrix proteins, 
implying extensive changes beyond neuroinflammation and neurode-
generation. Indeed, myelin degeneration and defective remyelination 
with mouse aging causes cognitive deficits45 and aggravates Alzhei-
mer’s disease pathology46, and microglia homeostatically modulate 
the perisynaptic matrix47,48. Moreover, the observation that white 
matter regions exhibit the most pronounced shifts in aging microglial 
transcriptomes25, coupled with the enrichment of genetic risk variants 
for neurodegenerative diseases in microglial and oligodendrocyte 
genes49, underscores a potential link between oligodendrocyte aging 
and age-related neuroinflammation and their relevance to neurodegen-
eration. Future studies exploring these multicellular and extracellular 
matrix interactions in the aging brain and their interactions with the 
periphery may reveal key insights into human health and longevity.
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Methods
UKB
Participants and proteomics. The UKB is a population-based prospec-
tive cohort with omics and phenotypic data collected on approximately 
500,000 participants, aged 40–69 years at recruitment, between 2006 
and 2010. A subset of participants had subsequent visits after the 
baseline assessment: 20,337 participants had a first repeat assessment 
(Instance 1; 2012–2013); approximately 85,000 had a first MRI imaging 
visit (Instance 2; from 2014 to ongoing); and approximately 9,000 had 
a second MRI imaging visit (Instance 3; from 2019 to ongoing). Details 
on available phenotypes can be found at https://biobank.ndph.ox.ac. 
uk/showcase/, and all participants provided informed consent.

The UKB-PPP consortium generated Olink Explore 3,072 prot-
eomics data from blood plasma samples collected from 54,219 UKB 
participants. These data consisted of 46,595 randomly selected sam-
ples from the baseline visit and 6,376 additional baseline visit samples 
selectively prioritized by the UK-PPP (samples presumably enriched 
for rare diseases and polymorphisms). Additional Olink proteomics 
data (using an earlier version of the platform, ~1,500 proteins) were 
generated from 1,268 participants who participated in the COVID-19 
repeat imaging study. These data included samples from the base-
line visit, Instance 2 (imaging visit 2014+) and Instance 3 (imaging 
visit 2019+). Additional details on the proteomics data are provided 
in Sun et al.10 and at https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ 
PPP_Phase_1_QC_dataset_companion_doc.pdf.

UKB data were analyzed under application number 45420.

Clinical phenotypes. We defined participants’ last known age as either 
age at death or the difference between the latest date available in Inter-
national Classification of Diseases (ICD)-9, ICD-10, operating proce-
dure, cancer registry or UKB assessment visit fields and birth date; 
this age corresponds to censoring in the following survival analyses. 
Additionally, we define the age at onset of several groups of diseases 
based on a combination of information in ICD-10, ICD-9, operating 
procedure and cancer registry. The following disease groups were 
defined, as in ref. 50: Type 2 diabetes (E11), Ischemic heart disease (I20 
to I25), Cerebrovascular disease (I60 to I69), Chronic liver disease (K70 
and K73 to K76), Chronic kidney disease (N18), All-cause dementia (A81, 
F00 to F03, F05, F10, G30, G31 and I67), Vascular dementia (F01 and 
I67), Alzheimer’s disease (F00 and G30), Parkinson’s disease and par-
kinsonism (G20 to G22), Rheumatoid arthritis (M05 and M06), Macular 
degeneration (H35), Osteoporosis (M80 and M81), Osteoarthritis 
(M15 to M19), Prevalent hypertension (I10 to I13 and I15), Colorectal 
cancer (C18 to C20), Lung cancer (C33 and C34), Esophageal cancer 
(C15), Liver cancer (C22), Pancreatic cancer (C25), Brain cancer (C71), 
Leukemia (C91 to C95), Non-Hodgkin lymphoma (C82 to C86), Breast 
cancer (C50), Ovarian cancer (C56 and C57) and Prostate cancer (C61). 
For heart-related diseases, the group definitions were based on ref. 51: 
Heart failure (ICD-9: 4254, 4280, 4281 and 4289; ICD-10: I110, I130, I132, 
I255, I420, I428, I429, I500, I501 and I509) and Atrial fibrillation or flut-
ter (ICD-9: 4273; ICD-10: I480, I481, I482, I483, I484 and I489; OPCS-4: 
K571, K621, K622, K623, K624, X501 and X502).

The following lifestyle and socioeconomic factors were assessed: 
alcohol intake frequency, smoking status, number of days per week 
of moderate physical activity 10+ minutes, number of days per week 
of vigorous physical activity 10+ minutes, Townsend Deprivation 
Index, sleeplessness or insomnia, age at completed full-time educa-
tion, oily fish intake, beef intake, cooked vegetable intake, tea intake, 
pork intake, processed meat intake, salad raw vegetable intake, bread 
intake, fresh fruit intake, non-oil fish intake and poultry intake. Medi-
cations reported in the verbal interview (https://biobank.ctsu.ox.ac. 
uk/crystal/label.cgi?id=100075) were also analyzed with a minimum 
of 100 participants per medication. Brain MRI-derived phenotypes 
extracted with FreeSurfer version 6 (https://biobank.ctsu.ox.ac.uk/ 
crystal/label.cgi?id=110 and https://biobank.ctsu.ox.ac.uk/crystal/ 

refer.cgi?id=1977) were analyzed, and age at MRI as well as estimated 
total intracranial volume were regressed out.

Proteomics quality control and imputation. The post-UKB-PPP qual-
ity control baseline visit data consist of 2,923 protein measurements 
from 53,018 samples. We performed additional quality control steps 
(Supplementary Fig. 2a) in the following order: 8,182 samples with 
more than 1,000 protein missing values were removed; seven proteins 
with missing values in over 10% of samples were removed; and 338 
samples with discordant reported sex and genetic sex were removed. 
This resulted in a post-quality control dataset consisting of 44,498 
samples with 2,916 protein measurements.

We then performed missing value imputation of the proteomics 
data (Supplementary Fig. 2b) with the following steps. First, we split 
the data into train and test, with each split comprising 11 randomly 
selected centers (train centers: 11002, 11005, 11006, 11007, 11008, 
11009, 11013, 11014, 11017, 11018 and 11023; test centers: 10003, 11001, 
11003, 11004, 11010, 11011, 11012, 11016, 11020, 11021 and 11022). Pro-
tein values were z-score normalized based on the means and standard 
deviations of protein values in the train split. We trained a k-nearest 
neighbors imputer using scikit-learn’s KNNImputer function with the 
number of neighbors (k) set to the square root of the sample size of 
the train split (k = 152). We evaluated the imputer on a subset of 5,591 
samples (2,967 train and 2,624 test) with zero original missing values. 
Specifically, we randomly inserted missing values into this ‘ground 
truth’ subsample at a rate equivalent to the missing value rate in the 
whole post-quality control dataset (3%). We then performed imputation 
on this subsample to calculate the error between imputed values and 
original ground truth values. We confirmed robust imputation with 
a total MAE of 0.57 (Supplementary Fig. 2c,d), which was consistent 
across both train and test. This is a relatively small error, considering 
that the data distribution is approximately 5 (z-score ±2.5 covers 99% 
of the distribution).

Stanford
Participants. Stanford ADRC. Samples were acquired through the 
National Institute on Aging–funded Stanford ADRC. The Stanford 
ADRC cohort is a longitudinal observational study of individuals 
with clinical dementia and age-matched and sex-matched individu-
als without dementia. All healthy control participants were deemed 
cognitively unimpaired during a clinical consensus conference that 
included board-certified neurologists and neuropsychologists. Cog-
nitively impaired participants underwent Clinical Dementia Rating 
and standardized neurological and neuropsychological assessments 
to determine cognitive and diagnostic status, including procedures 
of the National Alzheimer’s Coordinating Center (https://naccdata.
org/). Cognitive status was determined in a clinical consensus con-
ference that included neurologists and neuropsychologists. All 
participants were free from acute infectious diseases and in good 
physical condition.

SAMS. SAMS is an ongoing longitudinal study of healthy aging. Blood 
and cerebrospinal fluid (CSF) collection and processing were done by 
the same team and using the same protocol as in the Stanford ADRC. 
Neurological and neuropsychological assessments were performed by 
the same team and using the same protocol as in the Stanford ADRC. All 
SAMS participants had Clinical Dementia Rating = 0 and a neuropsy-
chological test score within the normal range, and all SAMS participants 
were deemed cognitively unimpaired during a clinical consensus con-
ference that included neurologists and neuropsychologists.

Sample preparation and proteomics. Plasma and CSF collection, 
processing and storage for all Stanford cohorts were performed using a 
single standard operating procedure. All studies were approved by the 
institutional review board of Stanford University, and written informed 
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consent or assent was obtained from all participants or their legally 
authorized representative.

Blood collection and processing were done according to a rigorous 
standardized protocol to minimize variation associated with blood 
draw and blood processing. In brief, approximately 10 cc of whole blood 
was collected in four vacutainer EDTA tubes (Becton Dickinson) and 
spun at 1,800g for 10 minutes to separate out plasma, leaving 1 cm of 
plasma above the buffy coat and taking care not to disturb the buffy 
coat to circumvent cell contamination. Plasma was aliquoted into 
polypropylene tubes and stored at −80 °C. Plasma processing times 
averaged approximately 1 hour from the time of the blood draw to the 
time of freezing and storage. All blood draws were done in the morning 
to minimize the impact of circadian rhythm on protein concentrations. 
CSF was collected via lumbar puncture using a 20–22-gauge spinal 
needle that was inserted in the L4–L5 or L5–S1 interspace. CSF samples 
were immediately centrifuged at 500g for 10 minutes, aliquoted in 
polypropylene tubes and stored at −80 °C.

Olink Explore 3,072 plasma proteomics data from 601 samples 
with matched SomaScan plasma proteomics data were analyzed in 
this study.

Computational Analyses
Identification of organ-enriched plasma proteins. We used the same 
methods that we developed in our previous study4 to identify putative 
plasma proteins. In brief, we identified organ-enriched genes: genes that 
were expressed at least four times higher in a single organ compared to 
any other organ based on human tissue bulk RNA sequencing data from 
the Gene Tissue Expression Atlas (Supplementary Fig. 1a–d). We refer 
to our previous study for details4. Our classification of organ-enriched 
genes is provided in Supplementary Table 1. We mapped these genes 
to proteins measured by Olink to identify organ-enriched plasma pro-
teins in the UKB dataset (Supplementary Table 2). Non-organ-enriched 
plasma proteins were called ‘organismal’ proteins.

We compared our transcriptomics-based organ enrichment clas-
sification to proteomics-based organ enrichment from Jiang et al.52. 
Forty-eight of the 2,916 plasma proteins in the UKB dataset were 
not detected in Jiang et al. tissue proteomics data. Of the detected 
proteins, 80% of those we called ‘organ-enriched’ were also called 
organ-enriched or organ-specific in the same organ in Jiang et al. (Sup-
plementary Fig. 1e), suggesting strong concordance between RNA 
and protein-based enrichment classification. Twelve percent of our 
organ-enriched plasma proteins were not enriched in Jiang et al., and 
8% were enriched in a different organ (Supplementary Fig. 1e). Most 
of the discordant proteins (20%) were secreted proteins produced 
by the liver; we called these proteins ‘liver-enriched’ based on RNA, 
but, based on Jiang et al. tissue proteomics, they were called either 
artery-enriched or non-enriched (Supplementary Fig. 1f,g). This high-
lights a key distinction between organ enrichment classification based 
on tissue transcriptomics versus proteomics: transcriptomics captures 
the source of the protein, whereas proteomics captures its destination. 
Although understanding inter-organ communication by studying the 
source versus destination of proteins is an interesting area for future 
study, for our current study, our goal was to determine the putative 
organ source of plasma proteins to infer organ age.

Organ age estimation and age gap calculation. We used LASSO 
regression models to build chronological age predictors (also known 
as aging models) to estimate biological age. Aging models were trained 
and tested on the post-quality control imputed baseline visit proteom-
ics data, using the same train–test split as the imputation. The LassoCV 
function from the scikit-learn53 Python package was used to identify 
the optimal lambda parameter value using five-fold cross-validation. 
The lambda value that achieved 95% of the performance of the 
highest-performing lambda value was applied to scikit-learn’s LASSO 
function to derive sparse aging models. Each organ aging model was 

trained using a distinct set of organ-enriched plasma proteins. An 
organismal aging model was trained using non-organ-enriched pro-
teins. A conventional aging model was trained using all proteins. Age 
gaps were calculated as the residual of predicted age linearly regressed 
against actual age. Age gaps were z-scored per aging model to normal-
ize for differences in age prediction accuracy. z-scored age gaps were 
used for all analyses. Extreme agers were defined as individuals with an 
age gap z-score greater than 1.5 or a z-score less than –1.5 in a given aging 
model. Conventional age gaps were not included in the extreme ager 
analyses due to their high similarity to organismal age gaps (Fig. 1b,c). 
All aging model weights are provided in Supplementary Table 3.

In addition to aging models trained on only proteins, we also 
assessed aging models trained on proteins and sex as well as aging mod-
els trained separately per sex. Pairwise correlations between age gaps 
produced by these different modeling frameworks showed very similar 
age gaps between the different modeling frameworks (Supplementary 
Fig. 3a). Age gap associations with mortality were highly similar across 
frameworks (Supplementary Fig. 3b). Extreme ager associations with 
mortality were similar, but sex-specific models showed no significant 
associations between extreme youth and longevity, although brain and 
immune youth trended toward significance (Supplementary Fig. 3c). 
For simplicity and robustness, we focused on aging models trained on 
only proteins for all primary analyses in this paper.

We also assessed aging models trained on only the randomly 
selected participants (86%) in the dataset. As mentioned previously, 
14% of the samples were prioritized by the UKB-PPP to study specific 
diseases of interest. Aging models trained on the whole dataset and 
aging models trained on only the randomly selected subset produced 
nearly equivalent age gaps (r = 1.00; Supplementary Fig. 4a). Age gap 
associations with incident disease and mortality were also nearly 
equivalent when examining either all participants or only randomly 
selected participants (r = 0.99 and r = 0.99; Supplementary Fig. 4b,c). 
Given these consistencies, we analyze the entire dataset in this paper.

Longitudinal age gap analyses. Longitudinal age gap analyses 
(Extended Data Fig. 3) required use of plasma proteomics data col-
lected across multiple visits (baseline, Instance 2 and Instance 3) from 
the same individual. However, proteomics data from post-baseline 
samples were obtained from an earlier version of the Olink assay with 
1,459 proteins and were not compatible with models trained on the 
approximately 3,000-protein platform. Therefore, for longitudinal age 
gap analyses, we trained a distinct set of organ aging models using the 
subset of 1,459 proteins that were measured across all visits.

Four proteins with missing values in over 10% of samples were 
removed, leaving 1,459 proteins for model development. For model 
training, missing values for baseline samples were k-nearest neighbor 
imputed as described above. 1,500-protein-based aging models were 
trained on 44,406 baseline samples from individuals who did not have 
follow-up proteomics data. Samples from individuals with longitudinal 
proteomics data were not included in model training to prevent model 
training/evaluation contamination. 1,500-protein-based aging models 
were LASSO regression models trained to predict the predicted age 
from the 3,000-protein-based organ aging models. To maximize the 
number of testable samples with unimputed data, we aimed to maxi-
mize sparsity of the models. The lambda value that achieved 90% of 
the performance of the highest-performing lambda value was used, 
followed by recursive feature elimination using scikit-learn’s RFECV 
function. Liver and muscle 1,500-based aging models were removed 
due to low correlation (r < 0.8) with 3,000-based aging models.

Models were tested and evaluated on longitudinal data from 1,176 
unique individuals who had non-missing values for all remaining aging 
model proteins (880 baseline, 843 Instance 2 and 786 Instance 3 sam-
ples). The mean number of years between Instance 2 and baseline was 
9.1 years (s.d. = 1.8), and the mean number of years between Instance 
3 and Instance 2 was 3.3 years (s.d. = 1.6).
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MRI-based brain age estimation. We trained an MRI-based brain 
aging model using 479 FreeSurfer brain volumetric phenotypes from 
45,574 individuals from Instance 2 (Extended Data Fig. 5d). This model  
was trained using the same pipeline as used for the organ aging mod-
els (LassoCV, five-fold cross-validation, lambda value with 95% per-
formance). MRI brain age gaps from Instance 2 were correlated with 
plasma brain age gaps from baseline.

Statistical analyses. Cox proportional hazard regression (CoxPHFitter 
function from the lifelines54 Python package) was used to assess the 
associations between organ age gaps and future disease or mortality 
risk. Linear regression (OLS function from the statsmodels55 Python 
package) was used to assess the associations between organ age gaps 
and environmental factors recorded at the time of blood draw. All 
Cox and linear regression models included age and sex as additional 
covariates. Multiple hypothesis testing correction was applied, when 
appropriate, using the Benjamini–Hochberg method, and the signifi-
cance threshold was a 5% false discovery rate. Corrected P values are 
referred to in this paper as q values. Gene Ontology pathway enrich-
ment analyses were performed using gProfiler56.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank data are available upon request to qualified researchers 
through a standard protocol (https://www.ukbiobank.ac.uk/register- 
apply). Organ age estimates for all participants analyzed in this study 
will be made available to UK Biobank researchers through Showcase. 
Stanford Olink/SomaScan from plasma/CSF and associated patient 
metadata are available upon reasonable request to the Stanford ADRC 
data release committee (https://web.stanford.edu/group/adrc/cgi- 
bin/web-proj/datareq.php). Data from specific Stanford cohorts can 
be requested to the following cohort leaders: ADRC, T.W.-C. (twc@
stanford.edu); SAMS, E.M. (bmormino@stanford.edu) or A.D.W. (awag-
ner@stanford.edu). Raw tissue bulk RNA sequencing data from the 
Adult Genotype Tissue Expression (GTEx) Project are available at the 
GTEx website (https://www.gtexportal.org/home/aboutAdultGtex). 
Public brain single-cell RNA sequencing datasets used in this study23 
are available in the Gene Expression Omnibus under accession code 
GSE254205.

Code availability
Aging models are linear models with coefficients for specific proteins 
and an intercept value. Predicted age is the linear combination of pro-
tein coefficients and z-scored protein levels, plus the intercept value. 
All aging model coefficients are provided in Supplementary Table 3. A 
Python tutorial on applying these coefficients to independent datasets 
is available in the organageUKB GitHub repository (https://github.com/ 
hamiltonoh/organageUKB).
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Extended Data Fig. 1 | Aging model coefficients. a, For all aging models, the top 20 aging model proteins and their weights are shown.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Organ aging models in the UK Biobank. a, Predicted 
organ age versus chronological age. Pearson correlations (r) and mean absolute 
errors (MAE) shown. b, Correlation between predicted and actual age across  
all aging models and train/test splits. c, Difference in correlation between 
predicted and actual age by biological sex. d, Mean difference in organ age gaps 

between males and females. e, Extreme ager sample sizes and proportions.  
f, Age distributions per extreme ager group (n = 44,498). The box bounds are the 
Q1, median and Q3; the whiskers show Q1 − 1.5× the interquartile range (IQR) and 
Q3 + 1.5× the IQR.
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Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03798-1

Extended Data Fig. 3 | Age gaps across longitudinal visits. a, Longitudinal 
proteomics data from a subset of 1,176 individuals were analyzed (880 baseline, 
843 Instance 2, and 786 Instance 3 samples). Longitudinal data were available 
only on the 1.5k-protein Olink assay, so new aging models trained on the 
1.5k-assay were developed. New aging models were trained on 44,406 samples 
without longitudinal data and tested on non-imputed samples with longitudinal 
data. Only 1.5k-aging models with age estimates that were correlated r > 0.8 with 
3k-based age estimates were included for downstream analyses. Correlation 
between baseline and Instance 2 age gaps are shown. b, Bar plot showing 
fractions of baseline extreme agers and non-extreme agers that are extreme 

agers in the same organ in Instance 2. Equivalent plot for youthful agers is shown 
on the right. c, Age gaps were grouped into bins of 0.5 standard deviation to 
determine changes in age gap bins across visits. Individual trajectories across 
visits for extreme immune agers are shown. Equivalent plot for youthful immune 
agers is shown at the bottom. d, Pie chart showing percent distribution of 
immune age gap bins in Instance 2 and Instance 3 for individuals who are extreme 
immune agers at baseline. Equivalent plot for youthful immune agers is shown 
at the bottom. e, Stacked bar plot showing percent distribution of age gap bins 
in Instance 2 and Instance 3 for individuals who are extreme agers at baseline. 
Equivalent plot for youthful agers is shown at the bottom.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Olink versus SomaScan organ aging models. a, Stanford 
Olink data contained missing values for the 5 aging model proteins shown. 
Protein ranks by aging model coefficient compared to total number of proteins in 
aging model are shown. b, Correlation between predicted versus chronological 
age in UKB train, UKB test, and Stanford test (cognitively normal controls) data.  
c, Olink versus SomaScan (Oh and Rutledge et. al. 2023) organ age gaps in 
Stanford data. Linear regressions with 95% confidence intervals are shown.  

d, Distribution of correlations between Olink and SomaScan overlapping 
proteins by name (from Eldjarn et. al. 2023). e, g:Profiler biological pathway 
enrichment of brain and immune aging model proteins per proteomics platform. 
f, Brain age gaps versus Alzheimer’s disease diagnosis, per proteomics platform 
(n = 598). The box bounds are the Q1, median and Q3; the whiskers show Q1 − 1.5× 
the interquartile range (IQR) and Q3 + 1.5× the IQR.
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Extended Data Fig. 5 | See next page for caption.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03798-1

Extended Data Fig. 5 | Age gaps versus disease. a, Cox proportional hazards 
regression was used to test the association between age gaps and future disease 
risk, adjusted for age-at-blood-draw and sex. Heatmap colored by age gap 
log(hazard ratio) is shown. Heatmap columns are ordered by the Gini-coefficient 
of age gaps per disease. The most significant associations per disease are 
highlighted with black borders. The log fold change in hazard ratios between 
the organ with the most significant age gap versus the conventional age gap is 
shown below the heatmap. b, Cox proportional hazards regression was used 
to determine the association between extreme agers and future disease risk, 
controlling for age and sex and other extreme agers. Heatmap colored by age 
gap log(hazard ratio) is shown. *p < 0.05, **q (Benjamini-Hochberg correction) 
<0.05. Non-significant hazard ratios (p < 0.05) were set to zero. c, Linear 
regression was used to determine the association between baseline organ age 

gaps and Instance 2 brain MRI volumes, controlling for age-at-blood-draw, 
age-at-MRI, sex, and estimated total intracranial volume. Non-significant effect 
sizes (q < 0.05) were set to zero. Red indicates positive associations, while blue 
indicates negative associations. d, MRI-based brain age versus chronological age 
in 45,574 individuals from Instance 2 (left). Plasma proteomics-based brain age 
versus chronological age in 44,498 individuals from baseline (right). Pearson 
correlations and mean absolute errors are shown. e, Linear regression was used 
to determine the association between organ age gaps and years since disease 
diagnosis. Non-significant effects (q < 0.05) were set to zero. f, Visualization of 
results from e. Organ age gap versus years since diagnosis shown for chronic 
kidney disease x pancreas age gap and Alzheimer’s disease x brain age gap. 
Lowess regressions with 95% confidence intervals are shown.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Feature importance for organ aging, Alzheimer’s 
disease, and mortality. a, Scatterplot showing results from feature importance 
for biological aging (FIBA) algorithm to identify proteins in the brain aging  
model contributing to the brain age gap’s association with Alzheimer’s disease 
risk. FIBA score (y-axis) indicates Alzheimer’s disease risk effect size loss after 
permutation of protein values. X-axis indicates absolute protein weight in the 
brain aging model. Color indicates protein weight in the brain aging model.  
b, Mean gene expression of brain aging protein-encoding genes in Haney et al. 
2024 human brain scRNA-seq data. c-f, Scatterplots showing results from feature 
importance for biological aging (FIBA) algorithm to identify proteins in the brain 
(c), conventional (d), artery (e), and immune (f) aging models that contribute 
to the model age gap’s association with future mortality risk. FIBA score (y-axis) 
indicates mortality risk effect size loss after permutation of protein values. X-axis 

indicates absolute protein weight in the aging model. Color indicates protein 
weight in the aging model. g, Forest plot showing results from Cox proportional 
hazards regression, testing the associations between extreme ager status and 
future all-cause mortality risk, controlling for age, sex. Points show extreme ager 
hazard ratios, error bars show 95% confidence intervals, and number on the right 
show number of events out of the total sample size. h, Protein levels of youthful 
brain agers versus normal agers (n = 12,696). The top ten (5 decrease with age,  
5 increase with age) proteins based on mortality risk FIBA score are shown. Each 
protein was linearly adjusted for age, sex, and every other protein in the brain 
aging model before plotting. Proteins are ordered by the aging model coefficient. 
The box bounds are the Q1, median and Q3; the whiskers show Q1 − 1.5× the 
interquartile range (IQR) and Q3 + 1.5× the IQR. i, As in h, but for the immune 
aging model (n = 12,847).
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