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Plasma proteomics links brainand immune
system aging with healthspan and longevity
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Plasma proteins derived from specific organs can estimate organ age and
mortality, but their sensitivity to environmental factors and their robustness
inforecasting onset of organ diseases and mortality remain unclear. To
address this gap, we estimate the biological age of 11 organs using plasma
proteomics data (2,916 proteins) from 44,498 individuals in the UK Biobank.
Organ age estimates were sensitive to lifestyle factors and medications and
were associated with future onset (within 17 years’ follow-up) of a range of
diseases, including heart failure, chronic obstructive pulmonary disease, type
2 diabetes and Alzheimer’s disease. Notably, having an especially aged brain
posed arisk of Alzheimer’s disease (hazard ratio (HR) = 3.1) that was similar

to carrying one copy of APOE4, the strongest genetic risk factor for sporadic
Alzheimer’s disease, whereas a youthful brain (HR = 0.26) provided protection
that was similar to carrying two copies of APOE2,independent of APOE
genotype. Accrual of aged organs progressively increased mortality risk
(2-4aged organs, HR =2.3; 5-7 aged organs, HR = 4.5; 8+ aged organs, HR = 8.3),
whereas youthful brains and immune systems were uniquely associated with
longevity (youthful brain, HR = 0.60 for mortality risk; youthfulimmune
system, HR = 0.58; youthful both, HR = 0.44). Altogether, these findings
support the use of plasma proteins for monitoring of organ health and point
to the brain and immune systems as key targets for longevity interventions.

Aging causes organ dysfunction, chronic disease and death. Although
interventions such as caloricrestriction, young plasmaand rapamycin
extend healthspan in model organisms', potentially slowing aging,
their human efficacy is unclear due to limited molecular understand-
ing and assessment tools. Molecular biomarkers of human biological
age linked to health and disease are needed.

Recent studies show that human organs age at different rates>,
as seen in animals’’, necessitating organ-specific biological age

measures. Prior estimates of organ age used clinical metrics and blood
biochemistry, magnetic resonanceimaging (MRI), DNA methylation or
plasma proteins® °. However, their reproducibility across cohorts and
over longitudinal visits, their sensitivity to organ-specific diseases and
environmental factors and their associations withincident disease and
mortalityindependent of each other and established aging biomarkers
areunclear. Furthermore, itisunclear which organs are key to longev-
ityinhumans.
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Fig. 1| Plasma protein-derived organ age estimates in the UKB. a, Study design
to estimate organ-specific biological age from plasma proteomics datain the
UKB. A protein was called ‘organ-enriched’ if the gene encoding the protein was
expressed at least four-fold higher in one organ compared to any other organin
the GTEx organ bulk RNA sequencing atlas. Organ-enriched protein sets were
used to train LASSO chronological age predictors. Samples from 11 of 22 centers
(n=23,140) were used for training, and the remaining samples (n = 21,358) were
used for testing. An ‘organismal’ model, which was trained on the levels of non-
organ-specific (organ-shared) proteins, and a ‘conventional’ model, which was
trained on all proteins from the Olink assay, were also developed and assessed.
Model age gaps were calculated and then z-score normalized per organ to allow

for direct comparisons across organs. Age gaps were characterized and tested
for associations with disease risk, modifiable lifestyle choices and mortality risk.
b, Pairwise correlation of organ age gaps from all samples. Inset: the distribution
of all pairwise correlations, with the dotted line representing the mean.c, A
LASSO regression model was used to predict conventional age based on organ
ages and organismal age. Organismal, brain and artery ages were sufficient to
predict conventional age with > = 0.97. Relative weights are shown as a pie chart.
d, Extreme agers were defined by a1.5-s.d. increase or decrease in at least one age
gap. The mean organ age gaps of extremely youthful brain agers and accelerated
multi-organ agers are shown. Graphics inaand d created with BioRender.com.

Plasma proteomics, enabled by clinical accessibility of blood and
advancing technologies, is ideal for gaining molecular insights into
organ health and estimating organ-specific biological age. Building on
our prior SomaScan-based study (5,678 individuals, 5,000 proteins)*,
where we introduced machine learning models to estimate organ age,
inthe present study we tested our approach on 44,498 individuals in
the UK Biobank (UKB) (age 40-70 years), using an orthogonal prot-
eomics platform (Olink, ~3,000 proteins, 1,823 protein name overlap
with SomaScan). These data were previously generated by the UKB
Pharma Proteomics Project (UKB-PPP) and have been characterized
indetail.

The larger UKB cohort and expanded longitudinal phenotyping
enabled us to explore organ age associations with a wider range of
diseases (for example, chronic kidney disease, chronic obstructive
pulmonary disease (COPD), heart failure and dementias) and focus
on future disease incidence, whichis a better proxy for biological age
thandisease prevalence. We also assessed sensitivity to environmental
factors, including lifestyle, socioeconomic factors and medication
use. Lastly, we performed a nuanced examination of mortality risk,
comparing organ age estimates with established aging biomarkers,
including PhenoAge and estimated glomerular filtration rate, and we

tested associations between extreme organ youth versus age accelera-
tion on longevity versus early mortality.

Results

Plasma protein-derived organ age estimates in the UKB

To derive estimates of organ-specific biological age from the plasma
proteome, we (1) identified plasma proteins likely derived from a spe-
cificorgan (Supplementary Tables1and 2, Methods and Supplementary
Fig.1); (2) trained a machine learning model to predict chronological
agebased onthelevels ofidentified organ-enriched proteins (Supple-
mentary Tables 3 and 4 and Extended Data Fig. 1a); and (3) calculated
the age gap based on each person’s predicted age (therelative predicted
age compared to individuals of the same chronological age) (Methods
and Fig. 1a). The age gap provides a measure of relative biological age
compared to same-aged peers.

We performedthese three steps for each of 11 major organs, includ-
ingadiposetissue, artery, brain, heart,immune tissue, intestine, kidney,
liver, lung, muscle and pancreas. We focused our analyses on these
organs due to the availability of relevant age-related phenotype data
in the UKB. To compare organ age gaps to organ-agnostic measures
of biological age, we also derived age gaps from an ‘organismal’ aging
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model trained on non-organ-specific proteins (80% of all proteins)
and a ‘conventional’ aging model trained on all proteins on the Olink
assay. We confirmed that the top proteins in the conventional aging
model overlapped with a previous proteomic aging model developed
on the UKB dataset".

Data from 11 0f 22 plasma collection centers were used for model
training and the remaining 11 for testing (Fig. 1a; see Methods and Sup-
plementary Figs. 2 and 3 for details on protein quality control, imputa-
tionand modeling). Model performance was highly stable across train
and test centers (Extended Data Fig.2a,b and Supplementary Table 4).
Age gaps were z-scored per aging model to allow for direct comparison
between organs in downstream analyses (Fig. 1a). We observed some
sex differences between organ age gaps, with males having older kid-
neys,immune systems and intestines and females having older adipose
tissue, arteries and hearts (Extended Data Fig. 2¢,d).

After deriving organ age gaps, wefirst determined the uniqueness
ofeachmeasure. If organs age at different rates, then the age gap of one
organ should be independent from the age gap of another. Pairwise
correlations between age gaps showed that organ age gaps were only
weakly correlated (mean r=0.21; Fig. 1b and Supplementary Table 5),
confirming previous studies**®. Organ age gaps differed from the con-
ventional age gap, which strongly correlated with the organismal age
gap (r=0.87) due to majority protein overlap. Organismal, brain and
artery ages explained 97% of conventional age variance, with organis-
mal age contributing 74% (Fig. 1c).

We previously identified extreme organ agers who displayed espe-
cially fast aging in a single organ or in many organs*. We searched for
extreme agersin the UKB by identifying individuals with age gaps above
or below 1.5 s.d. from the population average in any organ (top and
bottom ~6-7% percentiles). Here we found not only fast (>1.5 z-age gap)
organagersbutalsoslow (<-1.5z-age gap) organ agers (1-2% prevalence
each,33%total; Fig. 1d and Extended Data Fig. 2e). Differences between
studies may stem from different sample sizes, proteomics platforms
and thresholds. We also identified multi-organ agers who had two or
more extreme organ age gaps (26% of samples; Extended Data Fig. 2e).
Fourteen percent of samples were ambiguous, with both positive and
negative extreme age gaps, and 27% of remaining samples were defined
asnormal agers (Extended Data Fig. 2e). Multi-organ agers were signifi-
cantly older than normal and single-organ agers, suggesting that aged
organs accumulate over time (Extended Data Fig. 2f).

To assess longitudinal stability of organ age gaps, we analyzed
1,176 individuals from the COVID-19 repeat imaging study with plasma
proteomics (earlier version of Olink, 1,459 proteins) from 2-3 visits
over1-15 years (visits: baseline, Instance 2 and Instance 3) (Methods).
Using organ aging models trained on the 1,459 proteins shared across
Olink assay versions (correlated r > 0.8 with 3,000-protein models),
we found moderate to strong correlations (mean r = 0.6) between
baseline and Instance 2 visit age gaps, indicating relative stability over
approximately 9 years, with potential dynamic changes due tolifestyle,
disease or technical variability (Extended Data Fig. 3a).

Examininglongitudinal stability of extreme ager status, we found
that baseline extreme agers were 3-22 times more likely to remain
extreme agersin the same organatInstance 2 (Extended Data Fig. 3b),
but 68% lost this status. Analyzing age gap changesin 0.5-s.d. bins, 76%
ofbaseline extreme agers maintained directional stability at Instance
2 and 72% at Instance 3, supporting relative stability (Extended Data
Fig. 3c—e). Additional studies with larger cohorts, denser sampling
and higher-coverage proteomics are needed to clarify technical versus
biological stability.

We next sought to compare our UKB Olink organ aging models
with our previously developed SomaScan organ aging models. We
generated Olink plasma proteomics data from 1,636 samples pooled
across the Stanford Alzheimer’s Disease Research Center (ADRC) and
the Stanford Aging and Memory Study (SAMS)™>"*>. We previously gener-
ated SomaScan plasma proteomics datafrom 601 of these samples for

our prior study*. This allowed us to directly compare organ age gaps
derived across different proteomics platforms.

We tested UKB-trained organ aging models on Stanford Olink
data. Of note, five organ aging model proteins—ANGPTL7, EBI3.IL27,
GZMB, PGLYRP1and ADIPOQ—had missing valuesinall Stanford sam-
ples (Extended Data Fig. 4a). EBI3.IL27 and ADIPOQ had relatively
strong weights in the liver and adipose aging models, respectively
(Extended DataFig. 4a) and, therefore, reduced liver and adipose age
prediction accuracy in the Stanford samples (Extended Data Fig. 4b).
Overall, UKB-trained organ aging models showed similar age predic-
tion accuracies across UKB-train, UKB-test and Stanford-test healthy
control samples, demonstrating robustness of the models (Extended
DataFig.4b).

We next compared organ age gaps between platforms. We
observed moderate-strong correlations between the two platforms
(r=0.3-0.8; Extended Data Fig. 4c) with heart and kidney aging models
displaying the most concordant age gaps across platforms (r=0.81
and r=0.82, respectively). The overall moderate correlations were
expected given the differences in proteins measured per platform
(1,823 proteins overlap, 1,093 Olink-specific, 3,156 SomaScan-specific)
and the previously reported wide distribution of correlations for the
overlapping proteins (by name) across the two platforms* (Extended
Data Fig. 4d). Even if the same protein by name is measured, the two
platforms may quantify different forms of the same proteins (that is,
isoform, posttranslational modification), which may not necessarily
correlate with each other.

This suggested that each platform may provide complementary
informationin estimating organ age. Gene Ontology enrichment analy-
sesshowed that Olink brain aging proteins were enriched for perineu-
ronal nets and glial differentiation, whereas SomaScan emphasized
postsynaptic assembly; conversely, immune aging pathways were
similar across platforms (Extended Data Fig. 4e). Both brain models
were associated with prevalent Alzheimer’s disease (Extended Data
Fig. 4f), capturing distinct aging aspects. These findings show that
organ-specific biological age estimates, likely related to organ health,
canbe derived from plasma proteomic datain the UKB.

Organ age estimates predict future age-related disease

For an estimate of biological age to be informative, it must robustly
associate with the physiological state of the organ or individual and,
consequently, with age-related health and disease outcomes. Hence,
we sought to determine whether organ age gaps could predict future
diseasesintheirrespective organs. We tested the associations between
all13 z-scored age gaps and 15incident age-related diseases (2-17-year
follow-up) using Cox proportional hazard regression, while adjusting
for age and sex. Following Benjamini-Hochberg correction for mul-
tiple hypothesis testing, we identified 176 positive and four negative
significant associations out of 195 tests (Extended Data Fig. 5a and
Supplementary Table 6).

We discovered highly significant associations between heart
aging and atrial fibrillation (s.d. increase in heart age gap, haz-
ard ratio (HR) =1.75, ¢ <1 x 107%°) and heart failure (s.d. increase in
heart age gap, HR =1.83, ¢ = 8.35 x 10*), pancreas aging and kidney
aging with chronic kidney disease (s.d. increase in pancreas age gap,
HR=1.80, ¢=3.36 x10¥; s.d. increase in kidney age gap HR =1.66,
g =2.85x1072%), brain aging with Alzheimer’s disease (s.d. increase
in brain age gap, HR =1.80, ¢ =1.21x10"%) and lung aging with COPD
(s.d.increase in lung age gap, HR =1.39, ¢ = 6.82 x 10™*). Liver aging
was associated with chronicliver disease (s.d. increasein liver age gap,
HR=1.20, ¢ =3.87 x107), albeit the strength of the association was
modest and similar compared to other organs. Notably, organ-specific
age gaps consistently exhibited higher HRs than conventional age gaps
across all diseases (Extended Data Fig. 5a).

The widespread significant associations between organ aging
(176/195) and disease underscore the systemic nature of aging.
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To disentangle these systemic effects and identify organ age associa-
tions with disease independent of aging in other organs, we examined
multivariate Cox models that included all organ age gaps (excluding
‘conventional’ dueto collinearity with ‘organismal’, r = 0.87) as covari-
ates. After accounting for the aging of other organs, we found that
organ age gap associations with disease became much more organ
specific (Fig. 2a and Supplementary Table 7). For example, incident
heart failure was associated with all 13 baseline age gaps individu-
ally but only seven age gaps independently. Counterintuitively, we
observed that youthful arteries were associated with increased risk
for many diseases, including type 2 diabetes (s.d. increase in artery
age gap, HR=0.68, ¢=2.11x107%*), COPD (s.d. increase in artery age
gap, HR =0.85, g=8.85x1078), chronic liver disease (s.d. increase in
artery age gap, HR = 0.87, ¢ =7.58 x107) and others, highlighting the
complexity of aging’s link with disease. Notably, Alzheimer’s disease
was highly specific to brain aging, both individually (s.d. increase in
brain age gap, HR=1.80, ¢ =1.21x10"%) and independently of other
organs (s.d. increase inbrain age gap, HR=1.91, ¢ =2.37 x10™%).

Wealsoinvestigated the associations between extreme organ ager
status and disease risk, independent of age, sex and other extreme
organs (Extended DataFig. 5b and Supplementary Table 8). Multi-organ
agers 5-7 and 8+werenotincluded due to limited sample size for most
diseases. Individuals with 2-4 aged organs had significantly increased
risk for every disease that we examined. Individuals with extremely
aged brains, hearts, kidneys or lungs also showed broad increased
risk of disease. Conversely, individuals with 2-4 extremely youthful
organs were protected from many diseases, including chronic kidney
disease, osteoarthritisand COPD. Among youthful organ profiles, the
brain, immune system and intestine were nominally protective for
at least four diseases (nominal P < 0.10). A youthful brain was espe-
cially protective of Alzheimer’s disease (extreme brain youth only,
HR=0.28, P=0.076, g = 0.24) and other dementias, and a youthful
intestine was especially protective of diabetes (extreme intestine youth
only, HR=0.30, ¢ = 3.63 x107%; Extended Data Fig. 5b).

Giventhebrain’s strong and unique associations with Alzheimer’s
disease, we further examined all individuals with extremely youthful or
aged brains—regardIless of single or multi-organ ager status—and their
associations with Alzheimer’s disease risk, controlling for age, sex as
wellas APOE genotype, the strongest geneticrisk factor of Alzheimer’s
disease. Interestingly, we found that extreme brain aging conferred a
3.1-foldincrease in Alzheimer’s disease risk (HR = 3.11, P = 1.41 x 107%),
and extreme brain youth conferred a 74% reduced risk of Alzheimer’s
disease (HR=0.26, P=4.37 x10™), independent of age, sex, APOE4
and APOE2 (Fig. 2¢,d). Consequently, individuals with aged brains
exhibited a13.5-fold increased risk of developing Alzheimer’s disease
compared to those with youthful brains. Remarkably, when compar-
ing the effects of brain age to APOE genotype, having an aged brain
posed arisk similar to carrying one copy of APOE4, whereas having
ayouthful brain provided protection similar to carrying two copies
OF APOE2 (Fig. 2c). Brain age was very weakly correlated with APOE
genotype (Fig. 2e). Over the 17-year follow-up period, 120 of 2,628
individuals (4.56%) with aged brains developed Alzheimer’s disease,
whereas only seven of 1,998 individuals (0.35%) with youthful brains
developed the disease.

The specificity of the association between brainaging and demen-
tialed us to investigate whether organ age gaps were associated with
brain volume based on MRIdata from follow-up visits (Extended Data
Fig.5c). We found that the brain age gap at baseline visit was uniquely
associated with increased volume of the ventricles and decreased
volume of cortical regions at Instance 2 (-9 years later on average).

Brain MRI data were previously used to derive estimates of bio-
logical brain age'>'°. To compare our plasma proteomic brain age
estimate with an MRI-based brain age estimate, we trained an MRI
brain aging model using 479 FreeSurfer brain volumetric phenotypes
from 45,574 individuals from Instance 2. MRI brain age was correlated

with chronological age (r = 0.81, mean absolute error (MAE) = 3.65;
Extended DataFig. 5d), similar to previous reports™'®. Ans.d. increase
inthe MRIbrain age gap conferred a3.2-timesincreased risk of future
Alzheimer’s disease (HR = 3.21, P = 2.55 x 107%), confirming strong
relevance to functional brain aging. Interestingly, however, MRI-based
and plasma-based brain age gaps were only weakly correlated witheach
other (r=0.18, P=2.50 x107%; Fig. 2f), suggesting that each captures
unique components of brain aging. Although this weak correlation is
likely due, in part, to the approximately 9-year duration between MRI
and plasma collection, a recent study showed that plasma brevican
(BCAN) and glial fibrillary acidic protein (GFAP), but not other brain
aging proteinsidentified in our study, were associated with MRI brain
age", suggesting that biological differences also contribute to the weak
correlation. We speculate that MRIbrain age captures global cell loss,
whereas plasma brain age captures some of these volumetric changes
aswellasmolecular alterations related to cell states and interactions.

We also assessed organ age gap associations with disease progres-
sion, by regressing age gaps against years since diagnosis, for individu-
alswho were diagnosed with disease before blood draw. We found that
many organ age gaps increased throughout chronic kidney disease
progression (Extended Data Fig. Se). Interestingly, the brain age gap
was not associated with dementia progression (Extended Data Fig. 5f),
suggesting that it captures age-related changes that may predispose
individuals to dementia but does not reflect changes occurring after
disease onset.

We next sought to gain further insights into organ aging by exam-
ining aging model proteins and their weights (Extended Data Fig. 1a).
Aging models trained on the whole baseline sample versus only the
randomly selected (86%) baseline samples resulted in essentially
equivalent aging models and weights (Supplementary Fig. 4). The
strongest weighted protein in the brain aging model was neurofilament
light chain (NEFL; Fig. 2h), which increases with age and is a clinical
biomarker of axon degeneration that is often measured in clinical
trials for Alzheimer’s disease'®'"” and was recently approved as a sur-
rogate endpoint for a clinical trial to treat superoxide dismutase 1
amyotrophic lateral sclerosis (SODI ALS)*°*'. Our data suggest that it,
combined with other proteins, may also be a viable surrogate endpoint
for brain aging and risk for dementia in normal people. Other highly
weighted brain aging proteinsinclude myelin oligodendrocyte protein
(MOG), acomponent of the outer surface of myelin sheaths, and GFAP,
amarker of reactive astrocytes, whichbothincreased with age, as well
as BCAN, a brain extracellular matrix component produced by oligo-
dendrocyte precursor cells, and protein tyrosine phosphatase recep-
tor type R (PTPRR), which both decreased with age (Fig. 2h). Plasma
NEFL, GFAP and BCAN were previously highlighted as predictors of
future dementia risk?2. Using the permutation feature importance for
biological aging (FIBA) algorithm*, we found that all of the top seven
most highly weighted brain aging proteins contributed to the predic-
tionof Alzheimer’s diseaserisk, showing the importance of leveraging
theinformation from many brain-derived proteins tounderstand brain
aging and disease risk (Extended Data Fig. 6a).

Wethensought to determine which cell types these proteins were
likely derived from by analyzing public human brain single-cell RNA
sequencing data” (Extended Data Fig. 6b). Interestingly, we found
that approximately half of brain aging proteins were specific to the
oligodendrocytelineage, with the rest expressed mostly in neurons and
then astrocytes (Fig. 2i), pointing to white matter as akey aging region,
as suggested by human brain MRl and mouse brain RNA sequencing
studies®*.

Lung aging was explained primarily by lysosome-associated mem-
braneglycoprotein3 (LAMP3), a protein expressed specifically intype
Il alveolar stem cells; secretoglobin family 1A member 1 (SCGB1A1),
alsoknownas club cell secretory protein (CCSP), amarker of club cells;
and C-C motif chemokine ligand 18 (CCL18), a cytokine expressed by
alveolar macrophages, potentially reflective of stem cell dysfunction
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Fig. 2| Organ age estimates predict future age-related disease. a, Cox
proportional hazard regression was used to test the association between age
gaps and future disease risk, adjusted for age-at-blood-draw, sex and other age
gaps. The heatmap is color coded by age gap log(HR). Heatmap columns are
ordered by the Gini coefficient of age gaps per disease. b, Body plots showing
logHR values for type 2 diabetes, atrial fibrillation and Alzheimer’s disease

from the heatmapin a. ¢, Cox proportional hazard regression was used to test
the association between extreme brain youth/aging and future Alzheimer’s
diseaserisk, adjusted for age-at-blood-draw, sexand APOE4 and APOE2 genotype
(n=37,766). Points show age gap HRs, and error bars show 95% confidence
intervals. d, Cumulative incidence curves with 95% confidence intervals showing
onset of Alzheimer’s disease over time when comparing individuals with
extremely aged brains, individuals with extremely youthful brains and normal

brain age gap

brain agers. Age gap HRs and 95% confidence intervals from c are shown. e, Box
plot visualization of brain age gap versus APOE genotype (n = 43,326). The box
bounds are the Q1, median and Q3; the whiskers show Q1 - 1.5x the interquartile
range (IQR) and Q3 +1.5x the IQR. *P < 0.05, **P < 0.01, ***P < 0.001 from standard
two-sided ¢-test. f, Plasma-based brain age gap at baseline versus MRI-based
brain age gap at Instance 2 (several years after baseline visit). Correlation and
Pvalue are shown. g, Bar plot displaying the top 20 protein coefficients in the
brain aging model. h, Pie chart displaying the proportion of brain aging proteins
assigned to each brain cell type based on single-cell RNA sequencing. Cell type
was assigned based on cell type with the maximum expression of agiven gene.
Oligo, oligodendrocytes; OPC, oligodendrocyte precursor cell. Body graphicinb
created with BioRender.com.

and inflammation in the lung with age. Heart aging was explained
primarily by N-terminal pro-B-type natriuretic peptide (NT-proBNP),
avasodilating hormone that increases in response to heart damage,
whereaskidney aging was explained by renin (REN), a proteininvolved
inblood pressure regulation. Both NT-proBNP and REN were previously
identified as key heart and kidney aging proteins, respectively, based
on SomaScan plasma proteomics data* and are well-established bio-
markers of heart and kidney function. All aging model protein weights
are provided in Supplementary Table 3, and the top 20 proteins for
each model are shown in Extended Data Fig. 1a. Together, these data
show that plasma protein-derived organ age estimates are linked with
age-related organ diseases and can reveal insights into the aging biol-
ogy of their respective organs.

Organ age estimates are sensitive to modifiable lifestyle
choices

We next explored whether biological age estimates grounded in physi-
ological states of organ functionare sensitive to changesin lifestyle. We
tested the associations between all 13 z-scored age gaps and 18 lifestyle
factors (that s, diet, alcohol, smoking, exercise and insomnia) and
socioeconomic factors (thatis, education and Townsend Deprivation
Index), adjusted for each other as well as age and sex, using linear regres-
sion (Supplementary Table 9). We found 69 positive and 57 negative
significant associations (g < 0.05) after correcting for multiple hypoth-
esis testing. In line with their known health associations, smoking,
alcohol, processed meat intake, the Townsend Deprivation Index and
insomniawere associated with age acceleration across several organs,
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Fig. 3| Organ age estimates are sensitive to modifiable lifestyle factors.

a, Linear regression was used to determine the association between age gaps and
modifiable lifestyle factors while accounting for all other lifestyle factors as well
as age and sex. The heatmap is color coded by signed log,,(g). Only significant

(g <0.05) values are indicated by color coding. b, Linear regression was used

to determine the association between age gaps and drugs/supplements intake
while accounting for age and sex. Only drugs with significant (g < 0.05) youthful
associations in at least two organs are shown. Heatmap is color coded by signed

log,,(g value). Only significant (g < 0.05) values are indicated by color coding.

¢, Multivariate linear regression was used to determine the association between
age gaps versus early menopause and estrogen treatment independent of each
other. Bar plot showing signed log;,(P value) for menopause and estrogen
covariates is shown. d, Box plot visualization ofimmune age gaps in individuals
stratified by menopause status and estrogen treatment (n = 47). The box bounds
are the Q1, median and Q3; the whiskers show Q1 - 1.5x the interquartile range
(IQR) and Q3 +1.5x the IQR. Q, quartile.

whereas vigorous exercise, oily fish consumption, poultry consumption
and higher education were associated with youthful organs (Fig. 3a).

We also tested the associations between all 13 z-scored age gaps
and consumption of 137 drugs/supplements (n cases >100; Supple-
mentary Table10). After multiple hypothesis test correction, we found
six products—Premarin, ibuprofen, glucosamine, cod liver oil, multivi-
tamins and vitamin C—that were significantly (g < 0.01) associated with
youthinatleast two organs (Fig. 3b). Ibuprofen, glucosamine, cod liver
oil, multivitamins and vitamin C products were associated with youth
primarily in the kidneys, brain and pancreas (Fig. 3b).

Premarinisaconjugated estrogen medication typically prescribed
to women experiencing postmenopausal symptoms, and estrogen
medication was recently linked to reduced mortality risk in the UKB*.
Thus, we wondered whether estrogen medications may extend longev-
ity by preventing menopause-induced accelerated aging of organs
and disease risk”’. Among 47 women with normal, early or premature
menopause treated with estrogen, earlier menopause was associated
with accelerated aging across most organs (Fig. 3c), whereas estrogen
treatment correlated with youthfulimmune, liver and artery profiles
(Fig. 3d). Although cross-sectional analyses should be interpreted
with caution, these findings underscore the sensitivity of plasma
protein-derived organ age estimates to environmental factors and
their potential for evaluating the effects of interventions.

Brain and immune system youth predict longevity

We next sought to determine whether organ age estimates were asso-
ciated with future mortality. We tested associations between organ
age gaps and all-cause mortality risk, adjusting for age and sex, over a
2-17-year follow-up using Cox proportional hazard regression (Sup-
plementary Table 11). All organs showed significant associations,

with a 20-60% increased mortality risk per s.d. increase in age gaps
(Fig.4a), similar to findings from SomaScan-based organ aging models*.
These associations were robust to adjustment with blood cystatin C, a
marker of kidney filtration rate, and PhenoAge, an established blood
biochemistry/cell-count-based biological age estimate (whose age
gap has a mortality risk HR of 1.38 in the UKB), suggesting that organ
age estimates provide independent information not captured by exist-
ing clinical biomarkers. Surprisingly, brain aging was most strongly
predictive (s.d. increase in brain age gap, HR =1.59, P=2.16 x 107%;
Fig. 4a), suggesting that the brain may be a central regulator of lifes-
panin humans similar to findings in animal models (worms, flies and
mice)®®**°. Indeed, individuals with aged brains had increased risk for
several diseases beyond dementia, including COPD and heart failure
(Extended Data Fig. 5a,b), consistent with previous studies showing
that the brain regulates systemic inflammation® %,

To test whether organ age estimates provided additional predic-
tive power, beyond cystatin C and PhenoAge, we compared concord-
ance indices of mortality risk Cox models that included cystatin C,
PhenoAge, organ ages or combinations, with age and sex as covari-
ates. Organ ages alone performed similarly to the combined model,
outperforming cystatin Cand PhenoAge, indicating that they capture
additional predictive information (Fig. 4b). Brain age, conventional
age, PhenoAge and sex were key predictors in the combined model
(Fig. 4c). Application of FIBA to understand contributions of brain
and conventional aging model proteins on mortality risk highlighted
BCAN, NEFL and PTPRR from the brain as well as ectodysplasin A2
receptor (EDA2R, organismal protein), chemokine C-X-C motifligand
17 (CXCL17, organismal protein) and elastin (ELN, artery protein) from
the conventional aging model as important proteins (Extended Data
Fig. 6¢-f).
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Fig. 4| Accrual of aged organs progressively increases mortality risk, whereas
brain and immune system youth is associated with longevity. a, Bar plot
showing results from Cox proportional hazard regression analyses, testing the
associations between each age gap and future all-cause mortality risk, controlling
for labeled covariates (n =21,775). Bars show HRs, and error bars show 95%
confidence intervals. PhenoAge age gap HR adjusted for age and sex (HR =1.38)
isshown as adashed line for reference. b, Concordance indices from various
LASSO-regularized Cox proportional hazard models were trained to predict
mortality risk. Performance across train and test centers is shown. Covariates for
each model, in addition to age-at-blood-draw and sex, are labeled on the x axis.
¢, Model coefficients are shown for the combined model (OrganAge + PhenoAge
+CysC) fromb. d, Forest plot showing results from Cox proportional hazard

regression, testing the associations between extreme ager status (‘+ refers to
aged; ‘-~ refers to youthful) and future all-cause mortality risk, controlling for
age-at-blood-draw and sex. Only significant (P < 0.05) associations are shown.
Points show extreme ager HRs; error bars show 95% confidence intervals; and
the number on the right shows the number of events out of the total sample
size. e, Kaplan-Meier curves with 95% confidence intervals showing survival
over al7-year follow-up for normal agers, multi-organ agers (with 2-4, 5-7 or 8+
aged organs) and individuals with ayouthful brain orimmune system (brain- or
immune-). f,g, Gene Ontology pathway enrichment analyses from the top 10
brain (f) and immune (g) aging proteins, as determined from the mortality risk
FIBA score (Methods). CysC, cystatin C.

Although each organ age gap was associated with risk of death,
we wondered whether the accrual of aged organs would be increas-
ingly detrimental. Hence, we tested whether single-organ extreme
agers and multi-organ agers (bins of 2-4, 5-7 and 8+ organs) had an
increased risk of death compared to normal agers, while adjusting
for age and sex (Supplementary Table 12). Interestingly, we found
that, whereas having a single aged organ (brain, lung, intestine, heart,
immune, kidney, liver or pancreas) conferred a 1.5-3-fold increased
risk of death, having 2-4, 5-7 and 8+ extremely aged organs conferred
a2.3-fold, 4.5-fold and 8.3-fold (P=2.05x107°, P=3.86 x 10 and
P=8.30 x10™%) increased risk of death, respectively (Fig. 4d,e). Nota-
bly, over 60% of individuals with 8+ extremely aged organs at blood
draw died within 15 years (Fig. 4d).

We thensought to determine whether youthful organ profiles were
associated with longevity (Supplementary Table 12). We found thatindi-
viduals with youthful-appearing arteries had increased mortality risk,
and those with multi-organ youth had no difference in mortality risk
compared to normal agers (Fig. 4d). Using FIBA, we found that artery
proteinthrombospondin2 (THBS2), a protein that decreases with age
but has a positive association with mortality risk, was responsible for
the nonlinear association between the artery age gap and mortality
risk (Extended Data Fig. 6e). Why individuals with broad multi-organ
youthare not protected is unclear, although this may be due to limited
samplesize.

Notably, though, individuals with youthful brains (HR = 0.60,
P=7.49 x107%) and immune systems (HR = 0.58, P=7.34 x107) had
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significantly reduced mortality risk (Fig. 4d), similar to their unique
protective associations with disease (Extended Data Fig. 5b). We,
therefore, assessed individuals with both youthful brains and immune
systems and found that this group was most strongly protected from
mortality by effect size (HR = 0.44, P=0.042; Fig. 4d,e), underscor-
ing the benefits of having a resilient brain and immune system. Over
17 years, 792 0f 10,000 (7.92%) normal agers died, whereas only six of
160 individuals (3.8%) with youthful brains and immune systems died.

To probe the underlying mechanisms implicated in brain-related
andimmune-system-related longevity, we performed Gene Ontology
enrichment analyses of the top 10 brain and immune aging model
proteins based on mortality risk FIBA scores (Fig. 4f,g and Extended
DataFig. 6h,i).Selection of brain-specific orimmune-system-specific
plasma proteins as background for the enrichment test did not result
in significant associations, so we used all genes as background. Peri-
neuronal net was the most enriched brain pathway (BCAN, PTPRZ1
and NCAN), and secretory granule was the most enriched immune sys-
tem pathway. Intriguingly, neuroinflammation was another enriched
immune system pathway, composed of metalloproteinase 9 (MMP9),
aregulator of perineuronal net composition, as well as tumor necrosis
factor receptor superfamily member 1B (TNFSRF1B) and integrinalpha
M (ITGAM), also known as CD11B. Youthful brain agers had higher levels
of BCAN and NCAN, and youthful immune agers had lower levels of
MMP9 (Extended Data Fig. 6h,i), suggesting that global preservation
of brain extracellular matrix partly due to reduced degradation by
peripheral inflammatory factors and reduced chronic inflammation
partly regulated by the brain could be crucial for promoting longev-
ity. Together, these datareveal that plasma protein-derived organ age
estimates improve upon existing aging biomarkers for mortality risk
prediction, theaccrual of aged organs progressively increases mortal-
ity risk, and a youthful brain and immune system are key to longevity.

Discussion
Our findings based on plasma proteomics data (-3,000 proteins) from
nearly 45,000 individuals inthe UKB establish plasma protein-derived
organ age estimates as robust indicators of organ age, health and dis-
ease/mortality risk beyond gold standard clinical aging biomarkers and
reveal key proteins implicated in the aging process. Furthermore, we
show that organ age estimates are stable across train/test centers and
longitudinal visits and are cross-sectionally associated with modifiable
lifestyle choice, socioeconomic status and medications and, thus, lay the
foundation for human experiments testing the effects of novel longev-
ityinterventions on the biological age of organs at the individual level.
We note key considerations and limitations toinform future work.
Although our organ enrichment classification based on bulk RNA
sequencing atlasesyielded robust results, confirming the true protein
sources remains challenging; high-resolution gene expression maps
includinginformation onalternative splicing and changes with age and
disease could strengthen confidence. Like many studies, we relied on
cross-sectional age gaps, which only approximate aging rate histories.
Longitudinal proteomics data, integrated with deep environmental
and genetic phenotyping, are essential to accurately measure aging
rates, distinguish baseline differences and uncover their causes'®** %,
Such data could also clarify the sequence of organ aging at individual
and population levels. Although we observed that multi-organ aging
increases with age, suggesting cumulative organ decline, the specific
order of organ aging remains undefined. Surprisingly, individuals with
highly youthful organ profiles (except for brain and immune system)
were not protected from mortality, despite assumptions of benefit.
This aligns with studies showing U-shaped associations between clini-
cal biomarkers (for example, body mass index and platelet count)
and mortality, where extremely youthful phenotypes are associated
with elevated risk®*~*, warranting further exploration in aging bio-
marker research. Although organ age estimates independently pre-
dict mortality beyond clinical biochemistry biomarkers, their added

clinical value over established disease-specific biomarkers requires
disease-by-disease investigation*. Finally, as UKB participants are
predominantly of European ancestry, organ age estimates may need
recalibration for diverse genetic and environmental contexts, neces-
sitating broader studies.

Inthe present study, we found evidence that the brainand immune
system may be central regulators of aging and longevity in humans, as
aged brains are most strongly predictive of earlier mortality, and youth-
ful brains and immune systems are uniquely predictive of longevity.
After all, the brain regulates numerous critical age-related functions
throughout the body, including circadian rhythm, blood pressure,
energy homeostasis and stress response, via the neuroendocrine and
autonomic nervous systems, and chronicinflammation has been heav-
ilyimplicated inaging"*. Intriguingly, recent studies show bidirectional
communication between the brain and immune system in aging and
disease-relevant contexts, such as chronic stress, atherosclerosis and
infection®***, These observations suggest that accelerated aging or
maintenance of youthin the brainand immune system likely has broad
age-related effects across the body, although additional studies are
needed to test this hypothesis more rigorously in humans.

Regarding the molecular alterations that occur with brain aging,
we found many unexpected age-associated and disease-associated
changesinoligodendrocyte lineage and extracellular matrix proteins,
implying extensive changes beyond neuroinflammation and neurode-
generation. Indeed, myelin degeneration and defective remyelination
with mouse aging causes cognitive deficits* and aggravates Alzhei-
mer’s disease pathology*®, and microglia homeostatically modulate
the perisynaptic matrix*”*%, Moreover, the observation that white
matter regions exhibit the most pronounced shifts in aging microglial
transcriptomes®, coupled with the enrichment of genetic risk variants
for neurodegenerative diseases in microglial and oligodendrocyte
genes*’, underscores a potential link between oligodendrocyte aging
and age-related neuroinflammation and their relevance to neurodegen-
eration. Future studies exploring these multicellular and extracellular
matrix interactions in the aging brain and their interactions with the
periphery may reveal key insights into human health and longevity.
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Methods

UKB

Participants and proteomics. The UKBis a population-based prospec-
tive cohort with omics and phenotypic data collected on approximately
500,000 participants, aged 40-69 years at recruitment, between 2006
and 2010. A subset of participants had subsequent visits after the
baseline assessment: 20,337 participants had afirst repeat assessment
(Instance 1;2012-2013); approximately 85,000 had a first MRIimaging
visit (Instance 2; from 2014 to ongoing); and approximately 9,000 had
asecond MRIimaging visit (Instance 3; from 2019 to ongoing). Details
onavailable phenotypes canbe found at https://biobank.ndph.ox.ac.
uk/showcase/, and all participants provided informed consent.

The UKB-PPP consortium generated Olink Explore 3,072 prot-
eomics data from blood plasma samples collected from 54,219 UKB
participants. These data consisted of 46,595 randomly selected sam-
plesfromthe baseline visit and 6,376 additional baseline visit samples
selectively prioritized by the UK-PPP (samples presumably enriched
for rare diseases and polymorphisms). Additional Olink proteomics
data (using an earlier version of the platform, ~1,500 proteins) were
generated from 1,268 participants who participated in the COVID-19
repeat imaging study. These data included samples from the base-
line visit, Instance 2 (imaging visit 2014+) and Instance 3 (imaging
visit 2019+). Additional details on the proteomics data are provided
in Sun et al.’ and at https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/
PPP_Phase_1_QC_dataset_companion_doc.pdf.

UKB data were analyzed under application number 45420.

Clinical phenotypes. We defined participants’ last known age as either
ageatdeathor the difference betweenthe latest date availablein Inter-
national Classification of Diseases (ICD)-9, ICD-10, operating proce-
dure, cancer registry or UKB assessment visit fields and birth date;
this age corresponds to censoring in the following survival analyses.
Additionally, we define the age at onset of several groups of diseases
based on a combination of information in ICD-10, ICD-9, operating
procedure and cancer registry. The following disease groups were
defined, asinref. 50: Type 2 diabetes (E11), Ischemic heart disease (120
to125), Cerebrovascular disease (160 to169), Chronic liver disease (K70
andK73toK76), Chronickidney disease (N18), All-cause dementia (A81,
FOO to FO3, FOS, F10, G30, G31 and 167), Vascular dementia (FO1 and
167), Alzheimer’s disease (FOO and G30), Parkinson’s disease and par-
kinsonism (G20 to G22), Rheumatoid arthritis (MO5 and M06), Macular
degeneration (H35), Osteoporosis (M80 and M81), Osteoarthritis
(M15 to M19), Prevalent hypertension (110 to 113 and 115), Colorectal
cancer (C18 to C20), Lung cancer (C33 and C34), Esophageal cancer
(C15), Liver cancer (C22), Pancreatic cancer (C25), Brain cancer (C71),
Leukemia (C91to C95), Non-Hodgkin lymphoma (C82 to C86), Breast
cancer (C50), Ovarian cancer (C56 and C57) and Prostate cancer (C61).
For heart-related diseases, the group definitions were based on ref. 51:
Heartfailure (ICD-9:4254,4280,4281and 4289;1CD-10:1110, 1130, 1132,
1255,1420, 1428, 1429,1500, 1501 and 1509) and Atrial fibrillation or flut-
ter (ICD-9:4273;1CD-10:1480, 1481,1482,1483, 1484 and 1489; OPCS-4:
K571,K621,K622,K623, K624, X501 and X502).

Thefollowinglifestyle and socioeconomic factors were assessed:
alcohol intake frequency, smoking status, number of days per week
of moderate physical activity 10+ minutes, number of days per week
of vigorous physical activity 10+ minutes, Townsend Deprivation
Index, sleeplessness or insomnia, age at completed full-time educa-
tion, oily fish intake, beef intake, cooked vegetable intake, tea intake,
porkintake, processed meatintake, salad raw vegetable intake, bread
intake, fresh fruit intake, non-oil fish intake and poultry intake. Medi-
cations reported in the verbal interview (https://biobank.ctsu.ox.ac.
uk/crystal/label.cgi?id=100075) were also analyzed with a minimum
of 100 participants per medication. Brain MRI-derived phenotypes
extracted with FreeSurfer version 6 (https://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=110 and https://biobank.ctsu.ox.ac.uk/crystal/

refer.cgi?id=1977) were analyzed, and age at MRI as well as estimated
total intracranial volume were regressed out.

Proteomics quality control and imputation. The post-UKB-PPP qual-
ity control baseline visit data consist of 2,923 protein measurements
from 53,018 samples. We performed additional quality control steps
(Supplementary Fig. 2a) in the following order: 8,182 samples with
more than1,000 protein missing values were removed; seven proteins
with missing values in over 10% of samples were removed; and 338
samples with discordant reported sex and genetic sex were removed.
This resulted in a post-quality control dataset consisting of 44,498
samples with 2,916 protein measurements.

We then performed missing value imputation of the proteomics
data (Supplementary Fig. 2b) with the following steps. First, we split
the data into train and test, with each split comprising 11 randomly
selected centers (train centers: 11002, 11005, 11006, 11007, 11008,
11009,11013,11014,11017,11018 and 11023; test centers: 10003,11001,
11003, 11004, 11010, 11011, 11012, 11016, 11020, 11021 and 11022). Pro-
tein values were z-score normalized based on the means and standard
deviations of protein values in the train split. We trained a k-nearest
neighborsimputer using scikit-learn’s KNNImputer function with the
number of neighbors (k) set to the square root of the sample size of
the train split (k=152). We evaluated the imputer on a subset of 5,591
samples (2,967 train and 2,624 test) with zero original missing values.
Specifically, we randomly inserted missing values into this ‘ground
truth’ subsample at a rate equivalent to the missing value rate in the
whole post-quality control dataset (3%). We then performed imputation
on this subsample to calculate the error between imputed values and
original ground truth values. We confirmed robust imputation with
a total MAE of 0.57 (Supplementary Fig. 2c,d), which was consistent
across both train and test. This is a relatively small error, considering
that the data distribution is approximately 5 (z-score +2.5 covers 99%
of the distribution).

Stanford

Participants. Stanford ADRC. Samples were acquired through the
National Institute on Aging-funded Stanford ADRC. The Stanford
ADRC cohort is a longitudinal observational study of individuals
with clinical dementia and age-matched and sex-matched individu-
als without dementia. All healthy control participants were deemed
cognitively unimpaired during a clinical consensus conference that
included board-certified neurologists and neuropsychologists. Cog-
nitively impaired participants underwent Clinical Dementia Rating
and standardized neurological and neuropsychological assessments
to determine cognitive and diagnostic status, including procedures
of the National Alzheimer’s Coordinating Center (https://naccdata.
org/). Cognitive status was determined in a clinical consensus con-
ference that included neurologists and neuropsychologists. All
participants were free from acute infectious diseases and in good
physical condition.

SAMS. SAMS is an ongoing longitudinal study of healthy aging. Blood
and cerebrospinal fluid (CSF) collection and processing were done by
the same team and using the same protocol as in the Stanford ADRC.
Neurological and neuropsychological assessments were performed by
the same team and using the same protocolasin the Stanford ADRC. All
SAMS participants had Clinical Dementia Rating = O and a neuropsy-
chological test score within the normal range, and all SAMS participants
were deemed cognitively unimpaired duringa clinical consensus con-
ference thatincluded neurologists and neuropsychologists.

Sample preparation and proteomics. Plasma and CSF collection,
processing and storage for all Stanford cohorts were performed using a
single standard operating procedure. All studies were approved by the
institutional review board of Stanford University, and writteninformed
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consent or assent was obtained from all participants or their legally
authorized representative.

Blood collection and processing were done according to arigorous
standardized protocol to minimize variation associated with blood
drawandblood processing. Inbrief, approximately 10 cc of whole blood
was collected in four vacutainer EDTA tubes (Becton Dickinson) and
spun at 1,800g for 10 minutes to separate out plasma, leaving 1 cm of
plasma above the buffy coat and taking care not to disturb the buffy
coat to circumvent cell contamination. Plasma was aliquoted into
polypropylene tubes and stored at —80 °C. Plasma processing times
averaged approximately 1 hour from the time of the blood draw to the
time of freezing and storage. Allblood draws were done inthe morning
to minimize theimpact of circadian rhythm on protein concentrations.
CSF was collected via lumbar puncture using a 20-22-gauge spinal
needlethatwasinsertedintheL4-L5orL5-Slinterspace. CSF samples
were immediately centrifuged at 500g for 10 minutes, aliquoted in
polypropylene tubes and stored at -80 °C.

Olink Explore 3,072 plasma proteomics data from 601 samples
with matched SomaScan plasma proteomics data were analyzed in
this study.

Computational Analyses

Identification of organ-enriched plasma proteins. We used the same
methods that we developed in our previous study* to identify putative
plasmaproteins. In brief, weidentified organ-enriched genes: genes that
were expressed at least four times higher inasingle organ compared to
any other organ based on humantissue bulk RNA sequencing datafrom
the Gene Tissue Expression Atlas (Supplementary Fig. 1a-d). We refer
toour previous study for details*. Our classification of organ-enriched
genes is provided in Supplementary Table 1. We mapped these genes
to proteins measured by Olink to identify organ-enriched plasma pro-
teinsinthe UKB dataset (Supplementary Table 2). Non-organ-enriched
plasma proteins were called ‘organismal’ proteins.

We compared our transcriptomics-based organ enrichment clas-
sification to proteomics-based organ enrichment from Jiang et al.*>.
Forty-eight of the 2,916 plasma proteins in the UKB dataset were
not detected in Jiang et al. tissue proteomics data. Of the detected
proteins, 80% of those we called ‘organ-enriched’ were also called
organ-enriched or organ-specificin the same organinJiang et al. (Sup-
plementary Fig. le), suggesting strong concordance between RNA
and protein-based enrichment classification. Twelve percent of our
organ-enriched plasma proteins were not enriched in Jiang et al., and
8% were enriched in a different organ (Supplementary Fig. 1e). Most
of the discordant proteins (20%) were secreted proteins produced
by the liver; we called these proteins ‘liver-enriched’ based on RNA,
but, based on Jiang et al. tissue proteomics, they were called either
artery-enriched or non-enriched (Supplementary Fig. 1f,g). This high-
lights akey distinction between organ enrichment classification based
ontissue transcriptomics versus proteomics: transcriptomics captures
the source of the protein, whereas proteomics captures its destination.
Althoughunderstandinginter-organ communication by studying the
source versus destination of proteins is an interesting area for future
study, for our current study, our goal was to determine the putative
organ source of plasma proteins to infer organ age.

Organ age estimation and age gap calculation. We used LASSO
regression models to build chronological age predictors (also known
asaging models) to estimate biological age. Aging models were trained
andtested on the post-quality controlimputed baseline visit proteom-
ics data, using the same train-test split as theimputation. The LassoCV
function from the scikit-learn® Python package was used to identify
the optimal lambda parameter value using five-fold cross-validation.
The lambda value that achieved 95% of the performance of the
highest-performinglambda value was applied to scikit-learn’s LASSO
function to derive sparse aging models. Each organ aging model was

trained using a distinct set of organ-enriched plasma proteins. An
organismal aging model was trained using non-organ-enriched pro-
teins. A conventional aging model was trained using all proteins. Age
gapswere calculated astheresidual of predicted age linearly regressed
againstactual age. Age gaps were z-scored per aging model to normal-
ize for differences in age prediction accuracy. z-scored age gaps were
used for all analyses. Extreme agers were defined as individuals with an
agegapz-scoregreaterthanl.5oraz-scorelessthan-1.5inagivenaging
model. Conventional age gaps were not included in the extreme ager
analyses due to their high similarity to organismal age gaps (Fig. 1b,c).
Allaging model weights are provided in Supplementary Table 3.

In addition to aging models trained on only proteins, we also
assessed aging models trained on proteins and sex as well as aging mod-
elstrained separately per sex. Pairwise correlations between age gaps
produced by these different modeling frameworks showed very similar
age gaps between the different modeling frameworks (Supplementary
Fig.3a). Age gap associations with mortality were highly similar across
frameworks (Supplementary Fig. 3b). Extreme ager associations with
mortality were similar, but sex-specific models showed no significant
associations between extreme youth and longevity, although brainand
immune youth trended toward significance (Supplementary Fig. 3c).
For simplicity and robustness, we focused on aging models trained on
only proteins for all primary analyses in this paper.

We also assessed aging models trained on only the randomly
selected participants (86%) in the dataset. As mentioned previously,
14% of the samples were prioritized by the UKB-PPP to study specific
diseases of interest. Aging models trained on the whole dataset and
aging models trained on only the randomly selected subset produced
nearly equivalent age gaps (r=1.00; Supplementary Fig. 4a). Age gap
associations with incident disease and mortality were also nearly
equivalent when examining either all participants or only randomly
selected participants (r=0.99 and r = 0.99; Supplementary Fig. 4b,c).
Given these consistencies, we analyze the entire dataset in this paper.

Longitudinal age gap analyses. Longitudinal age gap analyses
(Extended Data Fig. 3) required use of plasma proteomics data col-
lected across multiple visits (baseline, Instance 2 and Instance 3) from
the same individual. However, proteomics data from post-baseline
samples were obtained from an earlier version of the Olink assay with
1,459 proteins and were not compatible with models trained on the
approximately 3,000-protein platform. Therefore, for longitudinal age
gap analyses, we trained a distinct set of organ aging models using the
subset of 1,459 proteins that were measured across all visits.

Four proteins with missing values in over 10% of samples were
removed, leaving 1,459 proteins for model development. For model
training, missing values for baseline samples were k-nearest neighbor
imputed as described above. 1,500-protein-based aging models were
trained on 44,406 baseline samples fromindividuals who did not have
follow-up proteomics data. Samples fromindividuals with longitudinal
proteomics datawere notincluded in model training to prevent model
training/evaluation contamination.1,500-protein-based aging models
were LASSO regression models trained to predict the predicted age
from the 3,000-protein-based organ aging models. To maximize the
number of testable samples with unimputed data, we aimed to maxi-
mize sparsity of the models. The lambda value that achieved 90% of
the performance of the highest-performing lambda value was used,
followed by recursive feature elimination using scikit-learn’s RFECV
function. Liver and muscle 1,500-based aging models were removed
due to low correlation (r < 0.8) with 3,000-based aging models.

Models were tested and evaluated on longitudinal datafrom 1,176
uniqueindividuals who had non-missing values for all remaining aging
model proteins (880 baseline, 843 Instance 2 and 786 Instance 3 sam-
ples). The mean number of years between Instance 2 and baseline was
9.1years (s.d.=1.8), and the mean number of years between Instance
3andInstance 2was 3.3 years (s.d. =1.6).
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MRI-based brain age estimation. We trained an MRI-based brain
aging model using 479 FreeSurfer brain volumetric phenotypes from
45,574 individuals from Instance 2 (Extended Data Fig. 5d). This model
was trained using the same pipeline as used for the organ aging mod-
els (LassoCV, five-fold cross-validation, lambda value with 95% per-
formance). MRI brain age gaps from Instance 2 were correlated with
plasmabrain age gaps from baseline.

Statistical analyses. Cox proportional hazard regression (CoxPHFitter
function from the lifelines®* Python package) was used to assess the
associations between organ age gaps and future disease or mortality
risk. Linear regression (OLS function from the statsmodels® Python
package) was used to assess the associations between organ age gaps
and environmental factors recorded at the time of blood draw. All
Cox and linear regression models included age and sex as additional
covariates. Multiple hypothesis testing correction was applied, when
appropriate, using the Benjamini-Hochberg method, and the signifi-
cance threshold was a 5% false discovery rate. Corrected P values are
referred to in this paper as g values. Gene Ontology pathway enrich-
ment analyses were performed using gProfiler®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

UK Biobank data are available upon request to qualified researchers
through astandard protocol (https://www.ukbiobank.ac.uk/register-
apply). Organ age estimates for all participants analyzed in this study
will be made available to UK Biobank researchers through Showcase.
Stanford Olink/SomaScan from plasma/CSF and associated patient
metadataare available uponreasonable request to the Stanford ADRC
datarelease committee (https://web.stanford.edu/group/adrc/cgi-
bin/web-proj/datareq.php). Data from specific Stanford cohorts can
be requested to the following cohort leaders: ADRC, TW.-C. (twc@
stanford.edu); SAMS, E.M. (bmormino@stanford.edu) or A.D.W. (awag-
ner@stanford.edu). Raw tissue bulk RNA sequencing data from the
Adult Genotype Tissue Expression (GTEX) Project are available at the
GTEx website (https://www.gtexportal.org/home/aboutAdultGtex).
Public brain single-cell RNA sequencing datasets used in this study*
are available in the Gene Expression Omnibus under accession code
GSE254205.

Code availability

Aging models are linear models with coefficients for specific proteins
and anintercept value. Predicted ageis the linear combination of pro-
tein coefficients and z-scored protein levels, plus the intercept value.
Allaging model coefficients are providedin Supplementary Table 3. A
Python tutorial on applying these coefficients to independent datasets
isavailable in the organageUKB GitHub repository (https://github.com/
hamiltonoh/organageUKB).
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Extended Data Fig. 2 | See next page for caption.
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Extended DataFig. 2| Organ aging models in the UK Biobank. a, Predicted between males and females. e, Extreme ager sample sizes and proportions.
organ age versus chronological age. Pearson correlations (r) and mean absolute f, Age distributions per extreme ager group (n = 44,498). The box bounds are the
errors (MAE) shown. b, Correlation between predicted and actual age across Q1, median and Q3; the whiskers show Q1 - 1.5x the interquartile range (IQR) and
allaging models and train/test splits. ¢, Difference in correlation between Q3 +1.5xthelQR.

predicted and actual age by biological sex. d, Mean difference in organ age gaps
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Extended Data Fig. 3| Age gaps across longitudinal visits. a, Longitudinal
proteomics data froma subset of 1,176 individuals were analyzed (880 baseline,
843 Instance 2, and 786 Instance 3 samples). Longitudinal data were available
only on the 1.5k-protein Olink assay, so new aging models trained on the
1.5k-assay were developed. New aging models were trained on 44,406 samples
without longitudinal data and tested on non-imputed samples with longitudinal
data. Only 1.5k-aging models with age estimates that were correlated r > 0.8 with
3k-based age estimates were included for downstream analyses. Correlation
between baseline and Instance 2 age gaps are shown. b, Bar plot showing
fractions of baseline extreme agers and non-extreme agers that are extreme

agersinthe same organin Instance 2. Equivalent plot for youthful agers is shown
ontheright. c, Age gaps were grouped into bins of 0.5 standard deviation to
determine changes in age gap bins across visits. Individual trajectories across
visits for extreme immune agers are shown. Equivalent plot for youthfulimmune
agers is shown at the bottom. d, Pie chart showing percent distribution of
immune age gap bins in Instance 2 and Instance 3 for individuals who are extreme
immune agers at baseline. Equivalent plot for youthfulimmune agers is shown
atthe bottom. e, Stacked bar plot showing percent distribution of age gap bins
inInstance 2 and Instance 3 for individuals who are extreme agers at baseline.
Equivalent plot for youthful agers is shown at the bottom.
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Extended DataFig. 4 | Olink versus SomaScan organ aging models. a, Stanford
Olink data contained missing values for the 5 aging model proteins shown.
Protein ranks by aging model coefficient compared to total number of proteinsin
aging model are shown. b, Correlation between predicted versus chronological
age in UKB train, UKB test, and Stanford test (cognitively normal controls) data.
¢, Olink versus SomaScan (Oh and Rutledge et. al. 2023) organ age gaps in
Stanford data. Linear regressions with 95% confidence intervals are shown.

d, Distribution of correlations between Olink and SomaScan overlapping
proteins by name (from Eldjarn et. al. 2023). e, g:Profiler biological pathway
enrichment of brainand immune aging model proteins per proteomics platform.
f, Brain age gaps versus Alzheimer’s disease diagnosis, per proteomics platform
(n=598). The box bounds are the Q1, median and Q3; the whiskers show Q1 - 1.5x
theinterquartile range (IQR) and Q3 +1.5x the IQR.
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Age gaps versus disease. a, Cox proportional hazards
regression was used to test the association between age gaps and future disease
risk, adjusted for age-at-blood-draw and sex. Heatmap colored by age gap
log(hazard ratio) is shown. Heatmap columns are ordered by the Gini-coefficient
of age gaps per disease. The most significant associations per disease are
highlighted with black borders. The log fold change in hazard ratios between
the organ with the most significant age gap versus the conventional age gap is
shown below the heatmap. b, Cox proportional hazards regression was used

to determine the association between extreme agers and future disease risk,
controlling for age and sex and other extreme agers. Heatmap colored by age
gap log(hazard ratio) is shown. *p < 0.05, **q (Benjamini-Hochberg correction)
<0.05. Non-significant hazard ratios (p < 0.05) were set to zero. ¢, Linear
regression was used to determine the association between baseline organ age

gaps and Instance 2 brain MRI volumes, controlling for age-at-blood-draw,
age-at-MRI, sex, and estimated total intracranial volume. Non-significant effect
sizes (q < 0.05) were set to zero. Red indicates positive associations, while blue
indicates negative associations. d, MRI-based brain age versus chronological age
in 45,574 individuals from Instance 2 (left). Plasma proteomics-based brain age
versus chronological age in 44,498 individuals from baseline (right). Pearson
correlations and mean absolute errors are shown. e, Linear regression was used
to determine the association between organ age gaps and years since disease
diagnosis. Non-significant effects (q < 0.05) were set to zero. f, Visualization of
results from e. Organ age gap versus years since diagnosis shown for chronic
kidney disease x pancreas age gap and Alzheimer’s disease x brain age gap.
Lowess regressions with 95% confidence intervals are shown.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Feature importance for organ aging, Alzheimer’s
disease, and mortality. a, Scatterplot showing results from feature importance
for biological aging (FIBA) algorithm to identify proteins in the brain aging
model contributing to the brain age gap’s association with Alzheimer’s disease
risk. FIBA score (y-axis) indicates Alzheimer’s disease risk effect size loss after
permutation of protein values. X-axis indicates absolute protein weight in the
brain aging model. Color indicates protein weight in the brain aging model.

b, Mean gene expression of brain aging protein-encoding genes in Haney et al.
2024 human brain scRNA-seq data. c-f, Scatterplots showing results from feature
importance for biological aging (FIBA) algorithm to identify proteins in the brain
(c), conventional (d), artery (e), and immune (f) aging models that contribute

to the model age gap’s association with future mortality risk. FIBA score (y-axis)
indicates mortality risk effect size loss after permutation of protein values. X-axis

indicates absolute protein weight in the aging model. Color indicates protein
weightin the aging model. g, Forest plot showing results from Cox proportional
hazards regression, testing the associations between extreme ager status and
future all-cause mortality risk, controlling for age, sex. Points show extreme ager
hazard ratios, error bars show 95% confidence intervals, and number on the right
show number of events out of the total sample size. h, Protein levels of youthful
brain agers versus normal agers (n =12,696). The top ten (5 decrease with age,
Sincrease with age) proteins based on mortality risk FIBA score are shown. Each
proteinwas linearly adjusted for age, sex, and every other protein in the brain
aging model before plotting. Proteins are ordered by the aging model coefficient.
The box bounds are the Q1, median and Q3; the whiskers show Q1 — 1.5x the
interquartile range (IQR) and Q3 + 1.5x the IQR. 1, Asin h, but for theimmune
aging model (n=12,847).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No custom software was used. Only analyses based on existing software detailed below.




Data analysis Python 3.9.12
gprofiler-official==1.0.0
lifelines==0.27.3
matplotlib==3.5.1
numpy==1.21.5
pandas==1.4.2
scanpy==1.9.1
scikit-learn==1.0.2
scikit-survival==0.17.2
scipy==1.10.0
seaborn==0.12.2
statsmodels==0.13.5

R4.1.2
metafor==4.2.0

Pre-calculated FreeSurfer v6 brain MRI volumes (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

UK Biobank data is available upon request to qualified researchers through a standard protocol (https://www.ukbiobank.ac.uk/register-apply). Organ age estimates
for all participants analyzed in this study will be made available to UK Biobank researchers through Showcase. Stanford Olink/SomaScan from plasma/CSF and
associated patient metadata are available upon request to the to the Stanford-ADRC data release committee, https://web.stanford.edu/group/adrc/cgi-bin/web-
proj/datareq.php. Data from specific Stanford cohorts can be requested to the following cohort leaders: ADRC, Tony Wyss-Coray (twc@stanford.edu); SAMS, Beth
Mormino (bmormino@stanford.edu) or Anthony Wagner (awagner@stanford.edu). Raw tissue bulk RNA-seq data from the Adult Genotype Tissue Expression
(GTEXx) Project is available here (https://www.gtexportal.org/home/aboutAdultGtex). Public brain single-cell RNA-sequencing datasets used in this study1l are
available in the Gene Expression Omnibus under accession code GSE254205.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Biological sex data was accessed through the UK Biobank portal. Only samples with concordant self reported and genetic sex
were included. Organ age differences by sex were examined. Sex was used as a covariate in all disease-association regression
models. Inclusion of sex in the organ aging models was assessed.

Reporting on race, ethnicity, or Data from all ethnicities in the UK Biobank plasma proteomics dataset was assessed.
other socially relevant
groupings

Population characteristics The UK Biobank is a volunteer based study. Plasma proteomics was performed on individuals aged 40-70 with equal
distribution per sex.

UK Biobank

Participants and proteomics

The UK Biobank is a population-based prospective cohort with ‘omics and phenotypic data collected on approximately
500,000 participants, aged 40 to 69 years at recruitment between 2006 and 2010. A subset participants had subsequent
visits after the baseline assessment: 20,337 participants had a first repeat assessment (Instance 1; 2012-2013),
approximately 85,000 had a first MRI imaging visit (Instance 2; from 2014 to ongoing), and approximately 9,000 had a second
MRI imaging visit (Instance 3; from 2019 to ongoing). Details on available phenotypes can be found online at https://
biobank.ndph.ox.ac.uk/showcase/ and all participants provided informed consent.

The UK Biobank Pharma Proteomics Project (UKB-PPP) consortium generated Olink Explore 3,072 proteomics data from
blood plasma samples collected from 54,219 UKB participants. These data consisted of 46,595 randomly selected samples
from the baseline visit and 6,376 additional baseline visit samples selectively prioritized by the UK-PPP (samples presumably
enriched for rare diseases and polymorphisms). Additional Olink proteomics data (using an earlier version of the platform,
~1,500 proteins) were generated from 1,268 participants who participated in the COVID-19 repeat imaging study. These data
included samples from the baseline visit, Instance 2 (imaging visit 2014+) and Instance 3 (imaging visit 2019+). Further details
on the proteomics data are described in Sun et al., 20239 and https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/
PPP_Phase_1_QC_dataset_companion_doc.pdf).
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Stanford

Participants

Stanford- Alzheimer’s Disease Research Center (ADRC)

Samples were acquired through the National Institute on Aging (NIA)-funded Stanford Alzheimer’s Disease Research Center
(Stanford-ADRC). The Stanford-ADRC cohort is a longitudinal observational study of clinical dementia subjects and age-sex-
matched nondemented subjects. All healthy control participants were deemed cognitively unimpaired during a clinical
consensus conference that included board-certified neurologists and neuropsychologists. Cognitively impaired subjects
underwent Clinical Dementia Rating and standardized neurological and neuropsychological assessments to determine
cognitive and diagnostic status, including procedures of the National Alzheimer’s Coordinating Center (https://
naccdata.org/). Cognitive status was determined in a clinical consensus conference that included neurologists and
neuropsychologists. All participants were free from acute infectious diseases and in good physical condition.

Stanford Aging and Memory Study (SAMS)

SAMS is an ongoing longitudinal study of healthy aging. Blood and CSF collection and processing were done by the same
team and using the same protocol as in Stanford-ADRC. Neurological and neuropsychological assessments were performed
by the same team and using the same protocol as in Stanford-ADRC. All SAMS participants had CDR=0and a
neuropsychological test score within the normal range; all SAMS participants were deemed cognitively unimpaired during a
clinical consensus conference that included neurologists and neuropsychologists.
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Sample preparation and proteomics

Plasma and CSF collection, processing, and storage for all Stanford cohorts were performed using a single standard operating
procedure. All studies were approved by the Institutional Review Board of Stanford University and written informed consent
or assent was obtained from all participants or their legally authorized representative.

Blood collection and processing were done according to a rigorous standardized protocol to minimize variation associated
with blood draw and blood processing. Briefly, about 10cc of whole blood was collected in 4 vacutainer
ethylenediaminetetraacetic acid (EDTA) tubes (Becton Dickinson vacutainer EDTA tube) and spun at 1800 x g for 10mins to
separate out plasma, leaving 1cm of plasma above the buffy coat and taking care not to disturb the buffy coat to circumvent
cell contamination. Plasma was aliquoted into polypropylene tubes and stored at -800C. Plasma processing times averaged
approximately one hour from the time of the blood draw to the time of freezing and storage. All blood draws were done in
the morning to minimize the impact of circadian rhythm on protein concentrations. CSF was collected via lumbar puncture
using a 20-22 G spinal needle that was inserted in the L4-L5 or L5-S1 interspace. CSF samples were immediately centrifuged
at 500 x g for 10 mins, aliquoted in polypropylene tubes and stored at -800C.

Olink Explore 3,072 plasma proteomics data from 601 samples with matched SomaScan plasma proteomics data were
analyzed in this study. Ages ranged from 36-90 (mean=70, standard deviation=8).

Recruitment The UK Biobank and Stanford are volunteer based, which may affect results, as they are not a true representative sample.
86% of the blood samples selected for proteomics were randomly selected. 14% were selected by the UKB-PPP.

Ethics oversight The UK Biobank Ethics Advisory Committee. All Stanford studies were approved by the Institutional Review Board of Stanford
University and written informed consent or assent was obtained from all participants or their legally authorized
representative.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All samples with plasma proteomics data were assessed.

Data exclusions  samples and proteins with limited missing values were analyzed. samples with concordant self-reported sex and genetic sex were included.
details in the methods.

Replication To ensure reproducibility and confidence in the findings, organ aging models were trained on ~half of the UK Biobank samples and tested on
the other half. Performance was highly similar across train and test. Aging models were also tested on Stanford data, a completely
independent dataset, and showed similar correlations between predicted and actual age. Mortality associations were also highly similar
across train and test splits. All attempts at replication were successful.

Randomization  NA, no treatment group




Blinding NA, no treatment group

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication ggsbc(rlﬁ)‘é/ggy authenticationprocedures for-each-seed-stock-tised-ornovel-genotype-generated.-bescribe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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